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FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university’s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-1 COMPLEX ANALYSIS II 
 

Introduction to block 

Unit 1 Harmonic Function : This unit deals with harmonic function and 

Riemann Sheet  

Unit 2 Analytic And Harmonic Function : Deals with analytic function 

and harmonic function with its examples. 

Unit 3 Application of Harmonic Function : Deals with harmonic 

function , Poisson Integral Formula and its proof 

Unit 4 The Dirichlet Problem for the Unit Disk and Fourier Series : 

Deals with Fourier Cosine series and Dirichlet Problem for the unit disk, 

also deals with Polar form of a complex number  

Unit 5 Geometric Series and Convergence : Deals with Zeno’s 

Paradoxes and Operation on convergence series. Also deals with 

sequence and series 

Unit 6 Principal of Convergence : Deals with Cauchy Criterian and its 

examples. Deals Weierstrass Product Inequality  

Unit 7 Convergence of Infinite Product : Deals with infinite product 

and its examples. Also deals with Uniform convergence and Weierstrass 

M-Test 

 

http://mathfaculty.fullerton.edu/mathews/c2003/DirichletProblemDiskMod.html
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UNIT 1: HARMONIC FUNCTION 
 

STRUCTURE 

1.0 Objective 

1.1 Introduction 

1.2 Harmonic Functions and their Riemann Sheets 

 1.2.1 Application of Harmonic Function 

1.3 Ideal Fluid Flow 

1.4 Limitations of the Milne-Thomson Method 

 1.4.1 The Complex Plane 

1.5 Polar Form and the Argument Function 

1.6 Complex Valued Function 

 1.6.1 The Special Cartesian Limits 

1.7 Summary  

1.8 Keyword 

1.9 Questions for review 

1.10 Notes 

1.11 Suggestion Reading And References 

1.12 Answer to check your progress 

1.0 OBJECTIVE 

In this part of the course, we will study some basic complex analysis. 

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematics 

and physics. We will extend the notions of derivatives and integrals, 

familiar from calculus to the case of complex functions of a complex 

variable. In so doing we will come across analytic functions, which form 
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the centerpiece of this part of the course. In fact, to a large extent 

complex analysis is the study of analytic functions. After a brief review 

of complex numbers as points in the complex plane, we will first discuss 

analyticity and give plenty of examples of analytic functions. We will 

then discuss complex integration, culminating with the generalized 

Cauchy Integral Formula, and some of its applications. We then go on to 

discuss the power series representations of analytic functions and the 

residue calculus, which will allow us to compute many real integrals and 

infinite sums very easily via complex integration. 

1.1 INTRODUCTION 

Definition: A real-valued function       is harmonic in a domain D if 

all of its second partials are continuous in D and if at each point 

in D ,    is analytic in a domain D, then both u(x,y), v(x,y) are harmonic 

in D 

Definition: A complex-valued function F(z) is holomorphic on an open 

set G if it has a derivative at every point in G. 

Here, Holomorphicity is defined over an open set, however, 

differentiability could only at one point. If f(z) is holomorphic over the 

entire complex plane, we say that f is entire. As an example, all 

polynomial functions of z are entire.  

 

1.2 HARMONIC FUNCTIONS AND THEIR 

RIEMANN SHEETS 

   Let  be a continuous real-valued function of the two real 

variables  that is defined on a domain .  A domain  is a 

connected and open set of points in the complex plane.)  The partial 

differential equation      ,  is known 

as Laplace's equation and is sometimes referred to as the potential 

equation.  

If  
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  are all continuous, and if  satisfies Laplace's equation, then 

 is called a harmonic function. In calculus, we might have 

been asked to show that polynomial functions like    

 and ,  and 

transcendental functions like     and 

,  and     and 

, are all harmonic functions. These pairs of 

functions are not chosen at random, and there is an intimate relationship 

between them, they are called the conjugate "harmonic functions." It is 

our goal to understand how this concept is tied in with analytic functions. 

  On the practical side, harmonic functions are important in the areas of 

applied mathematics, engineering, and mathematical physics.  Harmonic 

functions are used to solve problems involving steady-state temperatures, 

two-dimensional electrostatics, and ideal fluid flow. we will show how 

complex analysis techniques are used to solve these problems.  For 

example, the function    

,    is harmonic in the 

upper half-plane and takes on the boundary values    

  and  .  

  harmonic 

function  .  

We begin with an important theorem relating analytic and harmonic 

functions. 

 Theorem 3.1. Let    be an 

analytic function on a domain .  Then both   and  are 

harmonic functions on . In other words, the real and imaginary parts of 

an analytic function are harmonic. 

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Laplace.html
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Proof. Since  is differentiable on , the Cauchy-Riemann 

equations that      and ,  and 

that    .  we 

will prove that if  is analytic on , then   is also analytic on 

.  Since  is differentiable on , the Cauchy-Riemann 

equations imply that all the second partial derivatives:    

 and ,  

exist are and are continuous on .  

  Using these facts, we can start with the above mentioned Cauchy 

Riemann equations and take the partial derivative with respect to  of 

each side of these equations and obtain     and 

.  Similarly, taking the partial derivative of each 

side with respect to  yields     and 

.  Since the partial derivatives 

 are all continuous, we use a 

theorem from the calculus of real functions that states that the mixed 

partial derivatives are equal; that is,     and 

.  Combining all these results finally gives     

,  

and     .  Therefore 

both  and  are harmonic functions on .  

Definition (Harmonic Conjugate). If we have a function  that is 

harmonic on the domain  and if we can find another harmonic function 

 such that the partial derivatives for  and  satisfy 

the Cauchy-Riemann equations throughout , then we say 

that    is a harmonic conjugate of  .  Furthermore, it then 

follows that the 

function    is analytic on .  

The  unlocks the relationship among harmonic functions, conjugate 

harmonic functions and analytic functions. Specifically, it clearly states 

the special relationship between a harmonic function and it's conjugate 

http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/AnalyticFunctionMod.html
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harmonic function.  Loosely speaking, the harmonic function is the real 

part of the given analytic function and the harmonic conjugate function is 

the imaginary part of the given analytic function.   

Example 3.2 Show that    is a harmonic function and 

find a conjugate harmonic function  ,  and an analytic function 

.   

Solution.  Given  ,  we 

have    and the second partial 

derivatives are  .  It follows that    

,  hence    is a 

harmonic function for all .  

If we choose  ,  we 

have    and the second partial 

derivatives are  .  It follows that    

,  hence    is a 

harmonic function for all .  

Therefore, the harmonic conjugate of    ,  is    

.  

  Furthermore,  satisfy the Cauchy-Riemann equations    

,  and    .  

Therefore,    is an analytic function.  

Alternative Solution.  The 

function    is analytic for all 

values of . Hence, it follows from that both    

, and    ,  are 

harmonic functions.  

Example 3.3 Show that    is a harmonic conjugate 

of  .  

http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
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Solution.  Given  ,  we 

have    and the second partial 

derivatives are  .  It follows that     

,  hence    is a 

harmonic function for all .  

Similarly, for  ,  we 

have    and the second partial 

derivatives are  .  It follows that     

, hence    is a 

harmonic function for all .  

  Furthermore,  satisfy the Cauchy-Riemann equations    

, and     . 

we see that    is 

an analytic function. 

Therefore, the harmonic conjugate of    ,    is    

.  

Alternative Solution.  The 

function    is analytic 

for all values of . Hence, it follows that both    

, and    

,  are harmonic functions.  

Therefore, the harmonic conjugate of    ,    is    

.  

 Aside.    and  .  The partial 

derivatives of  are     and ,  

and the partial derivatives of  are      and 

.  They satisfy the Cauchy-Riemann 

equations because they are the real and imaginary parts of an analytic 

function.  At the point  ,  we 

http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/AnalyticFunctionMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
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have    and  ,  and these partial derivatives 

appear along the edges of the surfaces for    at the 

points    and  ,  respectively. 

Similarly, at the point  , we have    

and    and these partial derivatives appear along the 

edges of the surfaces for    at the 

points    and  ,  respectively. 

  

   

Figure 3.2 a  .  Figure 3.3 a  . 

  

   

  Figure 3.2 b  ,   Figure 3.3 b  ,    

at  we have .         at  we have 

.  
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  Figure 3.2 c  ,   Figure 3.3 c  ,    

at  we have .       

   For the function    we 

see that        and 

.  

 A question about the harmonic conjugate. 

  If  is the harmonic conjugate of  ,  then is    is 

the harmonic conjugate of  ? The following example shows that 

this is not the case, and    is not the harmonic conjugate 

of  . 

 Extra Example 3.4. Given the harmonic functions    

and  ,  and the analytic function  

.  

3.4 (a) Show that    is not an 

analytic function.  

Solution.  We can write    

 

http://mathfaculty.fullerton.edu/mathews/c2003/AnalyticFunctionMod.html
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Now  can be expressed in the form     

 where     , 

and     

The partial derivatives of  are      and  

, and       and  

. Now check out the the Cauchy-Riemann equations    

, 

and     . The Cauchy-

Riemann equations hold only at the isolated point .  

Therefore,    is not an 

analytic function. 

We are done. 

3.4 (b) Show that    is 

an analytic function, for all .  

Solution. We can write    

 

Now  can be expressed in the form     

 where      

and      

The partial derivatives of  are      and  

, and       and  

. Now check out the Cauchy-Riemann equations    

, 

and     . we see 

http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
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that    is an analytic 

function, for all .  

  We can use complex analysis to show easily that certain combinations 

of harmonic functions are harmonic. For example, if    is a 

harmonic conjugate of  ,  then their product    is 

a harmonic function. This can be verified directly by computing the 

partial derivatives and showing that Laplace's equation (3-26) holds, but 

the details are tedious. If we use complex variable techniques instead, we 

can start with the fact that  is 

an analytic function. Then we observe that the square of  is also an 

analytic function, which is    ,  which can 

be written as    .  

We then know immediately that the imaginary 

part,  ,  is a harmonic function by Theorem 

3.8. Since a constant multiple of a harmonic function is harmonic, it 

follows that    is harmonic. It is left as an exercise to 

show that if    and    are two harmonic functions that 

are not related in the preceding fashion, then their product need not be 

harmonic. 

 Method I. Construction of the Harmonic Conjugate of u(x,y) using 

Integration. 

 We now introduce methods for the construction of a harmonic conjugate 

function.  The first method uses familiar techniques of calculus. 

Check-in Progress-1 

Note: Please give a solution of questions in space gives below: 

Q. 1 Define Harmonic Conjugate 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

http://mathfaculty.fullerton.edu/mathews/c2003/AnalyticFunctionMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/HarmonicFunctionMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/HarmonicFunctionMod.html
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Q. 2 Give Definition of Harmonic Function. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Theorem 3.5 (Construction of a Conjugate). Let    be 

harmonic in an -neighborhood of the point .  Then there exists 

a conjugate harmonic function    defined in this neighborhood 

such that    ,  is an analytic function. 

Proof. A conjugate harmonic function  will satisfy the Cauchy-

Riemann equations      and .  

Assuming that such a function exists, we determine what it would have 

to look like by using a two-step process.  First, we 

integrate    (which should equal ) with respect to  and 

get (3-27)    where  is a function 

of  alone that is yet to be determined. Second, we compute  by 

differentiating both sides of this equation with respect to  and replacing 

 with  on the left side, which gives    

  It can be shown (we leave the 

details for the reader) that because u is harmonic, all terms except those 

involving  in the last equation will cancel, revealing a formula for 

 involving  alone. Elementary integration of the single-variable 

function  can then be used to discover . We finally observe 

that the function    so created indeed has the properties we seek. 

http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
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  The functions    and    are computed with the formulas:     

,         and        .  

Remark. If you prefer a more succinct formula, then the harmonic 

conjugate of    is given by     

.  

Proof.   Technically we should always specify the domain of a function 

when we define it. When no such specification is given, it is often 

assumed that the domain is the entire complex plane, or the largest set for 

which the expression defining the function which makes sense. 

 Example 3.6 Show that    is a harmonic function 

and find the harmonic conjugate  .  

Solution. We follow the construction process. The first partial derivatives 

are (3-28)    and .  To verify 

that  is harmonic, we compute the second partial derivatives and 

note that    ,  so  

satisfies Laplace's Equation (3-26).  To construct , we start with 

Equation (3-27) and the first of Equations (3-28) and the Cauchy-

Riemann equation    and get     

 

We now need to differentiate the left and right sides of this equation with 

respect to ,    .  Use 

Equation and the Cauchy-Riemann equation    to 

http://mathfaculty.fullerton.edu/mathews/c2003/harmonicfunction/HarmonicFunctionMod/Links/HarmonicFunctionMod_lnk_7.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
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obtain      It follows easily that     

,  then an easy integration 

yields  ,  where  is a real constant.  For 

convenience, we can choose . 

Therefore,     .  

The "ghost of the imaginary numbers" - the subtle connection 

between Harmonic and Analytic Functions. 

  When you look at a family of level curves of a real function , 

do you naturally think of complex numbers?  Certainly, it not the first 

thing that pops into our minds. However, it seems to be a subtle fact 

when studying complex analysis.  

 We cannot fail to stress the importance of the harmonic function pair 

that is constructed with Theorem 3.4 and Theorem 3.5.  The orthogonal 

grid formed by the families of harmonic functions and how complex 

functions are used to find them is one goal of this book and is discussed 

in detail in Chapter 11. In reality, they are constructed with inverse 

functions .  It will take a while to feel comfortable with these 

concepts and that is why they are studied later in the book. For the time 

being do not worry about them, they are merely ghosts of the imaginary 

numbers.  

 For practical purposes, it suffices to consider regions in the -plane and 

their image in the -plane. However, the concept of a Riemann surface 

as being a "two dimensional manifold" has been around for a long time. 

So it is no surprise that things get sticky.  The reader can do research and 

see that work being done regarding harmonic functions on Riemann 

surfaces (and also on foliations).  

 1.2.1 Applications of Harmonic Functions 

 we will introduce the complex potential , 

which is an analytic function and ,  are harmonic 

http://mathfaculty.fullerton.edu/mathews/c2003/HarmonicFunctionMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/HarmonicFunctionMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/MathModelsMod.html
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functions. It has many physical interpretations, some of which are listed 

below. 

 

         Interpretations for the level curves of  and . 

We do not have time to explore all of these applications at this time. So 

we will introduce the topic of ideal fluid flow. 

 1.3 IDEAL FLUID FLOW 

   We assume that an incompressible and frictionless fluid flows over the 

complex plane and that all cross-sections in planes parallel to the 

complex plane are the same. Situations such as this occur when fluid is 

flowing in a deep channel. The velocity vector at the point  is (3-

29)   .  

  The assumption that the flow is irrational and has no sources or sinks 

implies that both the curl and divergence vanish, that is, (3-30)   

 and .  Hence 

 obey the partial differential equations (3-30)   

, (3-30)   and     .  

Equations (3-30) are similar to the Cauchy-Riemann equations and 

permit us to define a special complex function: (3-31)   

.  Here we have  (3-

http://mathfaculty.fullerton.edu/mathews/c2003/MathModelsMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
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30)   ,  and  (3-30)   

  We can use Equations (3-

30) to verify that the Cauchy-Riemann equations are satisfied for 

:    ,     and     

.  Assuming the functions 

 have continuous partials, Theorem 3.4 guarantees 

that function   defined in Equation (3-31) is analytic, and that 

the fluid flow of Equation (3-29) is the conjugate of an analytic function, 

that is,     .  

  In Section 6.4 we will prove that every analytic function  has 

an analytic antiderivative ;  assuming this to be the case, we 

can write  (3-32)   ,  (3-30)   where  (3-

30)   .  Theorem 3.8 tells us that  is a 

harmonic function. If we use the vector interpretation of a complex 

number we see that the gradient of  can be written 

as     . 

  The Cauchy-Riemann equations applied 

to    give  ;  making this substitution in 

the last equation yields    

.  

Equation (3-14) says that  ,  which by 

the preceding equation and Equation (3-32) imply that    

.  Finally, from Equation (3-

29),  is the scalar potential function for the a fluid flow, 

so     .  

 Definition. Given the complex potential .  

The curves    are called equipotentials,  and  

the curves    are called streamlines.  They 

are used to describe the path of fluid flow.  

http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/FunTheoremCalculusMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/HarmonicFunctionMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/CauchyRiemannMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/MathModelsMod.html
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In Section 11.4 we will see that the family of equipotentials is orthogonal 

to the family of streamlines. 

 Example 3.14. Show that the harmonic function    is 

the scalar potential function for the fluid flow    .  

Solution. We can write the fluid flow expression 

as     .  Then use the equation     

.  It is easy to see that an antiderivative of    

is  .  Therefore,    is the complex potential The real 

part of  is the scalar potential function function:    

.  Note that the 

hyperbolas      are the equipotential curves, and that 

the hyperbolas      are the streamline curves, these 

curves are orthogonal, as shown in Figure 3.6.  

  

      

      Figure 3.6 Red equipotential curves  ,       and 

blue streamline curves  ,          for the complex 

potential  . 

 Method II. Construction of the Harmonic Conjugate of u(x,y) using 

Algebra. 

http://mathfaculty.fullerton.edu/mathews/c2003/MathModelsMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/MathModelsMod.html
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The usual method proposed for finding the harmonic conjugate uses 

integrals and derivatives and is shown above as Method I.  A second 

method discovered by the British mathematician Louis Melville Milne-

Thomson (1891-1974) uses novel algebraic construction. His method 

appears in the article On the Relation of an Analytic Function of z to Its 

Real and Imaginary Parts, L. M. Milne-Thomson, The Mathematical 

Gazette, Vol. 21, No. 244 (July 1937), pp. 228-229, Jstor. A good 

reference to read is the recent article, Recovering Holomorphic Functions 

from Their Real or Imaginary Parts without the Cauchy-Riemann 

Equations, William T. Shaw, SIAM Review, Vol 46, No. 4, 2004, pp 

717-718, Jstor.  

 The Milne-Thomson Method for constructing a harmonic 

conjugate.  (i) Given the harmonic function  then construct     

.  Under the proper conditions, 

 is a harmonic conjugate of , and     

  is an 

analytic function.  

Proof of (i). 

(ii) Given the harmonic function  then construct     

.  Under the proper conditions, 

 is a harmonic conjugate of , and     

 is an 

analytic function.  

1.4 LIMITATIONS OF THE MILNE-

THOMSON METHOD 

Observe that in Milne-Thomson method, the term   will be 

transformed into    

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Milne-Thomson.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Milne-Thomson.html
http://links.jstor.org/sici?sici=0025-5572%28193707%292%3A21%3A244%3C228%3A1OTROA%3E2.0.CO%3B2-K
http://links.jstor.org/sici?sici=0025-5572%28193707%292%3A21%3A244%3C228%3A1OTROA%3E2.0.CO%3B2-K
http://www.jstor.org/stable/20453575
http://www.jstor.org/stable/20453575
http://www.jstor.org/stable/20453575
http://mathfaculty.fullerton.edu/mathews/c2003/harmonicfunction/HarmonicFunctionMod/Links/HarmonicFunctionMod_lnk_10.html
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 and that the term  will be transformed 

into       Hence the method does not work 

if the given harmonic function contains a term that is the real or 

imaginary part 

of      

Hence it is applicable when the analytic function is a power series 

centered about the origin.  The reader is encouraged to investigate the 

origins and limitations of the Milne-Thomson method. 

 Extra Example 1. Use Methods I and II to construct the harmonic 

conjugate of  .  Also, it shows that the 

underlying analytic function is  .  

    

   The orthogonal grid in the -plane and its image under the analytic 

function  .  
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 Extra Example 2. Use Methods I and II to construct the harmonic 

conjugate of  .  Also, it show that the 

underlying analytic function is  .  

  

  

   The orthogonal grid in the -plane and its image under the analytic 

function  .  

 Extra Example 3. Use Methods I and II to construct the harmonic 

conjugate of  .  

Also, it show that the underlying analytic function 

is  .  
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   The orthogonal grid in the -plane and it's image under the analytic 

function  .  

Extra Example 4. Use Methods I and II to construct the harmonic 

conjugate of  .  Also, it show that the 

underlying analytic function is  .  

    

   The orthogonal grid in the -plane and it's image under the analytic 

function  .  
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Extra Example 5. Use Methods I and II to construct the harmonic 

conjugate of  .  Also, show that the underlying 

analytic function is  .  

    

    The orthogonal grid in the -plane and it's image under the analytic 

function  .  

    Remark. There are infinitely many branches of the multi-valued 

inverse function  ,  and when the regions are combined, they 

will fill up the -plane.  

Extra Example 6. Use Methods I and II to construct the harmonic 

conjugate of  .  Also, show that the underlying 

analytic function is  .  

    

    The orthogonal grid in the -plane and it's image under the analytic 

function  .  
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    Remark. There are infinitely many branches of the multi-valued 

inverse function  ,  

 and when the regions are combined, they will fill up the -plane.  

1.4.1 The Complex Plane 

The set C of complex numbers is naturally identified with the plane R 2. 

This is often called the Argand plane. Given a complex number z = x+i 

y, its real and imag- ✻ ✲ z = x + iy y x ✼ binary parts define an element 

(x, y) of R 2 , as shown in the figure. In fact, this identification is one of 

the real vector spaces, in the sense that adding complex numbers and 

multiplying them with real scalars mimic the similar operations one can 

do in R 2. Indeed, if α ∈ R is real, then to α z = (α x) + i(α y) there 

corresponds the pair (α x, α y) = α (x, y). Similarly, if z1 = x1 + i y1 and 

z2 = x2 + i y2 are complex numbers, then z1 + z2 = (x1 + x2) + i(y1 + 

y2), whose associated pair is (x1 + x2, y1 + y2) = (x1, y1) + (x2, y2). In 

fact, the identification is even one of the Euclidean spaces. Given a 

complex number z = x + i y, its modulus |z|, defined by |z| 2 = zz∗ , is 

given by p x 2 + y 2 which is precisely the norm k(x, y)k of the pair (x, 

y). Similarly, if z1 = x1 + i y1 and z2 = x2 + i y2, then Re(z ∗ 1 z2) = 

x1x2 + y1y2 which is the dot product of the pairs (x1, y1) and (x2, y2). 

In particular, it follows from these remarks and the triangle inequality for 

the norm in R 2 , that complex numbers obey a version of the triangle 

inequality: 

|z1 + z2| ≤ |z1| + |z2| 

1.5 POLAR FORM AND THE ARGUMENT 

FUNCTION 

Points in the plane can also be represented using polar coordinates, and 

this representation, in turn, translates into a representation of the complex 

numbers. 

Let (x, y) be a point in the plane. If we define r= √( x 2 + y 2) and θ by θ 

= arctan(y/x), then we can write (x, y) = (r cos θ, r sin θ) = r (cos θ,sin θ). 

The complex number z = x + i y can then be written as z = r (cos θ + i sin 
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θ). The real number r, as we have seen, is the modulus |z| of z, and the 

complex number cos θ + i sin θ has unit modulus. Comparing the Taylor 

series for the cosine and sine functions and the exponential functions we 

notice that cos θ+isin θ = e iθ. The angle θ is called the argument of z 

and is written arg(z). Therefore we have the following polar form for a 

complex number z. 

Being an angle, the argument of a complex number is only defined up to 

the addition of integer multiples of 2π. In other words, it is a multiple-

valued function. This ambiguity can be resolved by defining the principal 

value Arg of the arg function to take values in the interval (−π, π]; that is, 

for any complex number z, one has 

−π < Arg(z) ≤ π. 

Notice, however, that Arg is not a continuous function: it has a 

discontinuity along the negative real axis. Approaching a point on the 

negative real axis from the upper half-plane, the principal value of its 

argument approaches π, whereas if we approach it from the lower half-

plane, the principal value of its argument approaches −π. Notice finally 

that whereas the modulus is a multiplicative function: |zw| = |z||w|, the 

argument is additive: arg(z1 z2) = arg(z1) + arg(z2), provided that we 

understand the equation to hold up to integer multiples of 2π. Also notice 

that whereas the modulus is invariant under conjugation |z ∗ | = |z|, the 

argument changes sign arg(z ∗ ) = − arg(z), again up to integer multiples 

of 2π. 

Check in Progress-II 

Note : Please give a solution of questions in space give below: 

Q. 1 Define the Complex Plane. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Define Argument Function. 
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Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

1.6 COMPLEX-VALUED FUNCTIONS 

In this section, we will discuss complex-valued functions. We start with 

a rather trivial case of a complex-valued function. Suppose that f is a 

complex-valued function of a real variable. That means that if x is a real 

number, f(x) is a complex number, which can be decomposed into its real 

and imaginary parts: f(x) = u(x)+i v(x), where u and v are real-valued 

functions of a real variable; that is, the objects you are familiar with from 

calculus. We say that f is continuous at x0 if u and v are continuous at 

x0. 

Now consider a complex-valued function f of a complex variable z. We 

say that f is continuous at z0 if given any ε > 0, there exists a δ > 0 such 

that |f(z) − f(z0)| < ε whenever |z − z0| < δ. Heuristically, another way of 

saying that f is continuous at z0 is that f(z) tends to f(z0) as z approaches 

z0. This is equivalent to the continuity of the real and imaginary parts of 

f thought of as real-valued functions on the complex plane. Explicitly, if 

we write f = u+i v and z = x+i y, u(x, y) and v(x, y) are real-valued 

functions on the complex plane. Then the continuity of f at z0 = x0 +i y0 

is equivalent to the continuity of u and v at the point (x0, y0). 

“Graphing” complex-valued functions 

Complex-valued functions of a complex variable are harder to visualize 

than their real analogs. To visualize a real function f : R → R, one simply 

graphs the function: its graph being the curve y = f(x) in the (x, y)-plane. 

A complex-valued function of a complex variable f : C → C maps 

complex numbers to complex numbers, or equivalently points in the (x, 

y)-plane to points in the (u, v) plane. Hence its graph defines a surface u 

= u(x, y) and v = v(x, y) in the four-dimensional space with coordinates 

(x, y, u, v), which is not so easy to visualize. Instead one resorts to 

investigating what the function does to regions in the complex plane. 

Traditionally one considers two planes: the z-plane whose points have 
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coordinates (x, y) corresponding to the real and imaginary parts of z = x 

+ i y, and the w-plane whose points have coordinates (u, v) 

corresponding to w = u + i v. Any complex-valued function f of the 

complex variable z maps points in the z-plane to points in the w-plane 

via w = f(z). A lot can be learned from a complex function by analyzing 

the image in the w-plane of certain sets in the z-plane. We will have 

plenty of opportunities to use this throughout the course of these lectures 

Differentiability and analyticity 

Let us now discuss the differentiation of complex-valued functions. 

Again, if f = u + i v is a complex-valued function of a real variable x, 

then the derivative of f at the point x0 is defined by 

f 0 (x0) = u 0 (x0) + i v0 (x0) , 

where u 0 and v 0 are the derivatives of u and v respectively. In other 

words, we extend the operation of differentiation complex-linearly. 

There is nothing novel here. 

Differentiability and the Cauchy–Riemann Equations 

The situation is drastically different when we consider a complex-valued 

function f = u+i v of a complex variable z = x+i y. As is calculus, let us 

attempt to define its derivative.The first thing that we notice is that ∆z, 

being a complex number, can approach zero in more than one way. If we 

write ∆z = ∆x + i ∆y, then we can approach zero along with the real axis 

∆y = 0 or along the imaginary axis ∆x = 0, or indeed along any direction. 

For the derivative to exist, the answer should not depend on how ∆z 

tends to 0. Let us see what this entails. Let us write f = u + i v and z0 = 

x0 + i y0 

we showed that computing the derivative of complex functions written in 

a form such as    is a rather simple task. But life isn't always 

so easy.  Many times we encounter complex functions written as  (3-13)   

.  For example, suppose we had  

(3-13)   .  Is there 

some criterion - perhaps involving the partial derivatives 

of    and  ,  that we can use to 
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determine whether  is differentiable and if so, to find the value of 

? 

  The answer to this question is yes, thanks to the independent discovery 

of two important equations by the French mathematician Augustin Louis 

Cauchy (1789-1857) and the German mathematician Georg Friedrich 

Bernhard Riemann (1826-1866). 

  First, let's reconsider the derivative of  .  As we have stated, 

the limit is given in Equation (3-1) must not depend on 

how  approaches , and a calculation similar to Example 3.1 

(in Section 3.1), will prove that  . 

    We can drop the subscript on 

 to obtain    as a general formula. 

1.6.1 The Special Cartesian Limits 

   For the Cartesian coordinate form of a complex 

function     , it is important to 

determine how the function values change as we move along the 

horizontal grid line      at the point  ,  

and how the function values change as we move along the vertical grid 

line      at the point  .  

  We investigate these two approaches: a horizontal approach and a 

vertical approach to . Recall from our graphical analysis 

of    in Example 2.12, in Section 2.2, that the image of a 

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Cauchy.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Cauchy.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Riemann.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Riemann.html
http://mathfaculty.fullerton.edu/mathews/c2003/AnalyticFunctionMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/ComplexFunPowerRootMod.html
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square is a "curvilinear quadrilateral" and the images of the horizontal 

and vertical edges are portions of parabolas in the -plane.  For 

convenience, we let the square have vertices  ,  

,  ,  and  . Then the image 

points are ,  ,  

,  and  ,  as shown in Figure 3.1.  

        

   Figure 3.1 The image of a small square under the mapping  

,        the vertex ,  is mapped onto the 

point  .  

  We know that    is differentiable, so the limit of the difference 

quotient    exists no matter how we 

approach  .  Let us investigate the two special 

Cartesian limits. 

First, we can numerically approximate    by using a 

horizontal increment in .  

Use    and    where  
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 to compute the difference quotient.    

   

Second, we can numerically approximate    by using 

a vertical increment in .  

Use    and    where  

 to compute the difference quotient.     
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Comparing these two numerical approximations we see 

that     ,     and    

,  which leads us 

to speculate that  .  

  These numerical approximations lead to the idea of taking limits along 

the horizontal and vertical directions.  

First, we can take the limit along the horizontal direction.    

 

Second, we can take the limit along the vertical direction.    
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Comparing these two limits we see 

that     ,      and    

.  

Since the above two limits were not taken along all possible approaches 

to  ,  they alone are not sufficient to prove 

that  ,  but they prepare our thinking for Theorem 3.3. 

Exploration 

  We now generalize this idea by taking limits of an arbitrary 

differentiable complex function and obtain an important result. 

Theorem 3.3 (Cauchy-Riemann Equations). Suppose that  (3-14)   

,  is differentiable at the 

point .  Then the partial derivatives of  exist at the 

point ,  and can be used to calculate the derivative at . 

That is, (3-14)   ,     and also  (3-15)   

.  Equating the real and imaginary 

parts of Equations (3-14) and (3-15) gives the so-called Cauchy-Riemann 

Equations: (3-16)    and 

.  

 Exploration for the Cauchy-Riemann Equations. 

 Aside. Both  and  can assist us in calculating limits.  

 Aside. The Mathematica solution uses the command.  

 

 

 

 

 

 

http://mathfaculty.fullerton.edu/mathews/c2003/cauchyriemann/CauchyRiemannMod/Links/CauchyRiemannMod_lnk_1.html
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Looking at the above limits, and equating the real and imaginary parts 

we have the following equations.     ,     and    

.  

 In Mathematica the syntax for partial derivatives can be explained as 

follows. In the expression , the superscript  means, take 

one derivative with respect to the first variable . In the expression 

, the superscript  means, take one derivative with 

respect to the second variable . Similarly, the expressions  

and  are the  and  partial derivatives, respectively. 

  Therefore, we see that Mathematica can establish the Cauchy-Riemann 

equations     and .   

 We are done. 

Aside. The Maple commands are similar.  

   >        

 

   >         

   >         

Looking at the above limits, and equating the real and imaginary parts 

we have the following equations.     ,  and    

.  
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In Maple the syntax for partial derivatives can be explained as follows. In 

the expression , the subscript  means, take one derivative 

with respect to the first variable . In the expression , the 

subscript  means, take one derivative with respect to the second 

variable . Similarly, the expressions  and  

are the  and  partial derivatives, respectively. 

  Therefore, we see that Maple can establish the Cauchy-Riemann 

equations     and .   

1.7 SUMMARY 

We study in this unit complex valued function. We study Harmonic 

Function. We study Harmonic Conjugate function. We study Cauchy 

Riemann Equation with its examples. We study the limitation of Milne 

Thomson Method.  

1.8 KEYWORD 

Integral : A function of which a given function is the derivative, i.e. 

which yields that function when differentiated, and which may express 

the area under the curve of a graph of the function 

Vortex : A whirling mass of fluid or air, especially a whirlpool or 

whirlwind 

Conjugate : Give the different forms of (a verb in an inflected language 

such as Latin) as they vary according to voice, mood, tense, number, and 

person 

1.9 QUESTIONS FOR REVIEW  

Q. 1 Show that the function w = f(z) = z = x - iy is nowhere 

differentiable. 

Q. 2 If/(z) = z 3 , show we can use definition (1) to get/'(z) = 3z2. 

Q. 3 If f is differentiable at zo, then f is continuous at z0. 
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Q. 4 Let f(z) = fix + iy) = u(x, v) + /V(JC, v) be dijferentiable at the point 

zo = xo + O^o- Then the partial derivatives of u and v exist at the point 

(x0, yo) and satisfy the equations. 

ux(x0, y0) = VvUo, yo) and i/v(x0, y0) = -vv(x0, y0). 

Q. 5 The function/(z) = z 3 = x 3 - 3xy2 + /(3xy2 - y3 ) is known to be 

differentiable. 

Q. 6 Show that the following functions are entire. (a) f(z) = cosh x sin y – 

i sinh x cos y  

  (b) g{z) = cosh x cos y + i sinh x sin y 

Q. 7 Let u(x, y) be harmonic. Show that U(x, y) = u(x, —y) is harmonic. 

Hint: Use the chain rule for differentiation of real functions. 

1.10 NOTES 

1.  Axler, Sheldon; Bourdon, Paul; Ramey, Wade (2001). Harmonic 

Function Theory. New York: Springer. p. 25. ISBN 0-387-

95218-7. 

2. ^ Nelson, Edward (1961). "A proof of Liouville's 

theorem". Proceedings of the AMS. 12: 995. doi:10.1090/S0002-

9939-1961-0259149-4. 

1.11 SUGGESTION READING AND 

REFERENCES 

 Hazewinkel, Michiel, ed. (2001) [1994], "Harmonic 
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Science+Business Media B.V. / Kluwer Academic 

Publishers, ISBN 978-1-55608-010-4 

 Weisstein, Eric W. "Harmonic Function". MathWorld. 

 Harmonic Function Theory by S.Axler, Paul Bourdon, and Wade 

Ramey 

 Evans, Lawrence C. (1998), Partial Differential Equations, 

American Mathematical Society. 
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 Han, Q.; Lin, F. (2000), Elliptic Partial Differential Equations, 

American Mathematical Society. 

 Jost, Jürgen (2005), Riemannian Geometry and Geometric 

Analysis (4th ed.), Berlin, New York: Springer-
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1.12 ANSWER TO CHECK YOUR 

PROGRESS 

 Check In Progress-I 

Answer Q. 1 Check in Section 1 

 2 Check in Section 3 

 Check In Progress-II 

Answer Q. 1 check in section 5.1 

Answer Q 2 Check in Section 6 

 

 

 

https://en.wikipedia.org/wiki/David_Gilbarg
https://en.wikipedia.org/wiki/Neil_Trudinger
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-540-41160-7
https://en.wikipedia.org/wiki/Springer-Verlag
https://en.wikipedia.org/wiki/Springer-Verlag
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-25907-7
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UNIT 2: ANALYTIC & HARMONIC 

FUNCTION 
 

STRUCTURE 

2.0 Objective 

2.1 Introduction 

2.1.1 Analytic Function 

2.2 Entire Function 

2.2.1 The Rules for Differentiation 

2.3 Real Concepts in Complex Analysis 

2.4 Graphical Explorations of Polynomial Approximations 

2.5 Basic Properties of Conformal Mappings 

2.6 Conformal Mapping 

2.7 Summary 

2.8 Keyword 

2.9 Questions for review 

2.01 Suggestion Reading Reference 

2.11 Answer to check your progress 

2.0 OBJECTIVE 

Does the notion of a derivative of a complex function make sense? If so, 

how should it be defined and what does it represent? These and similar 

questions are the focus of this chapter. As you might guess, complex 

derivatives have a meaningful definition, and many of the standard 

derivative theorems from calculus (such as the product rule and chain 

rule) carry over for complex functions. There are also some interesting 

applications. But not everything is symmetric. You will learn in this 

chapter that the mean value theorem or derivatives do not extend to 
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complex functions. In later chapters, you will see that differentiable 

complex functions are, in some sense, much more "differentiable" than 

differentiable real functions. 

2.1 INTRODUCTION 

I think that a real function u(x,y) is harmonic if it obeys that equation. If 

it does, then there is another real function v(x,y) that is also harmonic, 

and there is a complex function f(x+iy)=u(x,y)+iv(x,y) which is 

differentiable. By that, I mean, you can 

write f(x+iy)=g(x+iy,x−iy)=g(z,z¯¯¯) 

and ∂g/∂z¯¯¯=0 

The harmonic functions are those satisfying the Laplace equation Δu=0, 

where Δ≡∂2x+∂2y is the Laplace operator. Usually one assumes them to 

be of class C2 (defined on some open subset of the complex plane, say, 

and taking real values; of course one can consider more general 

situations), but since any harmonic function admits (locally, which is 

enough of course) a harmonic conjugate, they are automatically of 

class C∞. 

2.1.1 Analytic Functions 

  Using our imagination, we take our lead from elementary calculus and 

define the derivative of  at , written , by  (3-

1)    , provided that the limit exists. If it 

does, we say that the function  is differentiable at . If we write 

,  then we can express Equation (3-1) in the form (3-

2)    .   If we let  and 

, then we can use the Leibniz's notation  for the 

derivative:  (3-3)    .  

Example 3.1. Use the limit definition to find the derivative 

of  .  

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Leibniz.html
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Solution. Using Equation (3-1), we have    

  We can drop the subscript 

on  to obtain    as a general formula. 

Alternative Solution. Using Equation (3-2), we have    

   

We can drop the subscript on  to obtain    as a general 

formula. 

  Pay careful attention to the complex value  in Equation (3-3); the 

value of the limit must be independent of the manner in which .  If 

we can find two curves that end at  along which  approaches two 
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distinct values, then  does not have a limit as  and 

 does not have a derivative at .  The same observation applies to 

the limits in Equations (3-2) and (3-1). 

 Example 3.2. Show that the 

function    is nowhere differentiable. 

Solution. We choose two approaches to the point  and 

compute limits of the two difference quotients.  We shall use formulas 

similar to (3-1), for calculating the directional derivatives along 

horizontal and vertical lines. 

First, we approach  along a line parallel to the -axis by 

forcing  to be of the form 

.        

Next, we approach  along a line parallel to the -axis by forcing  to 

be of the form 

.        
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  The limits along the two paths are different, so there is no possible 

value for the right side of Equation (3-1).  Therefore  is not 

differentiable at the point , and since  was arbitrary, 

  is nowhere differentiable. 

Remark 3.1. In Section 2.3 we showed that    is continuous for 

all . Thus, we have a simple example of a function that 

is continuous everywhere but differentiable nowhere. Such functions are 

hard to construct in real variables.  In some sense, the complex case has 

made pathological constructions simpler! 

   We are seldom interested in studying functions that aren't 

differentiable, or even differentiable at only a single point.  Complex 

functions that have a derivative at all points in a neighborhood of  

deserve further study. In Section 7.2, we will prove that, if the complex 

function  can be represented by a Taylor series at , then it must 

be differentiable in some neighborhoods of . Functions that are 

differentiable in neighborhoods of points are pillars of the complex 

analysis edifice; we give them a special name, as indicated in the 

following definition. 

 Definition 1.1 (Analytic Function). The complex function  

is analytic at the point  provided there is some  such that  

exists for all .  In other words,  must be differentiable not 

only at , but also at all points in some -neighborhood of . 

   If  is analytic at each point in the region , then we say that 

 is an analytic function on .  Again, we have a special term if 

 is analytic on the whole complex plane. 

2.2 ENTIRE FUNCTION 

Definition 1.2 (Entire Function). If  is analytic on the whole 

complex plane then  is said to be an entire function. 

http://mathfaculty.fullerton.edu/mathews/c2003/ComplexFunLimitMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/TaylorSeriesMod.html
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   Points of non-analyticity for a function are called singular points. They 

are important for applications in physics and engineering.  

   Our definition of the derivative for complex functions is formally the 

same as for real functions and is the natural extension from real variables 

to complex variables. The basic differentiation formulas are identical to 

those for real functions, and we obtain the same rules for differentiating 

powers, sums, products, quotients, and compositions of functions. We 

can easily establish proof of the differentiation formulas by using the 

limit theorems. 

2.2.1 The Rules for Differentiation. 

  Suppose that f(z) and g(z) are differentiable. From Equation (3-2) and 

the technique exhibited in the solution to Example 3.1, we can establish 

the following rules, which are virtually identical to those for real-valued 

functions.  (3-4)    ,  (3-

5)    ,  (3-

6)    ,  

(3_7)    

,  (3-8)    ,  (3-

9)    ,  (3-10)   

.  

Important particular cases of Equations (3-9) and (3-10), respectively, are  

(3-11)   ,  (3_12)   

.  

 Example 1.3. Use Formula (3-12) to calculate .  

Hint. Use  ,  ,  and  .  
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Solution. An easy computation yields    

  

  The proofs of the rules given in Equations through (3-10) depend on the 

validity of extending theorems for real functions to their complex 

companions. Equation (3-8), for example, relies on Theorem 3.1. 

 Theorem 3.1. If  is differentiable at  then  is continuous at 

.  

Proof. From Equation (3-1), we obtain    .  

Using the multiplicative property of limits given in Theorem 2.3 

in Section 2.3, we 

get       

This result implies that  , which in turn 

implies that    .  Therefore,  is continuous at 

. 

 The Derivative of  

  We can establish Equation (3-8) 

, from Theorem 3.1.  

http://mathfaculty.fullerton.edu/mathews/c2003/ComplexFunLimitMod.html
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Letting    and using Definition 3.1, we 

write     

.  

If we subtract and add the term  in the numerator, we get    

   

Using the definition of the derivative given by Equation (3-1) and the 

continuity of , we obtain    

,  which is what we wanted to 

establish.  

   We leave the proofs of the other differentiation rules as exercises. 

   The rule for differentiating polynomials carries over to the complex 

case as well.  If we let  be a polynomial of degree , so 

that     ,  then mathematical 

induction, along with Equations (3-5) and (3-7), gives    

.  Again, we leave the 

details of this proof for the reader to finish, as an exercise. 

   We shall use the differentiation rules as aids in determining when 

functions are analytic. For example, Equation (3-9) tells us that if 

 are polynomials, then their quotient  is analytic at 

all points where . This condition implies that the 

function    is analytic for all .  
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  The square root function is more complicated.  If  

,  then  is analytic at all points except  

(because  is undefined) and at points that lie along with the 

negative -axis. Recall from Exercise 17, in Section 2.3, that the 

argument function is not continuous along with the negative -axis. 

Therefore the function ,  is not continuous at points that lie 

along with the negative -axis. 

   We close this section with a complex extension of a famous theorem, 

which is attributed to Guillaume de l'Hôpital (1661-1704), the proof will 

be given in Section 7.5.  

 Theorem 3.2 (L'Hôpital's Rule). Assume that  and  are both 

analytic at .  If  ,  ,  and  , then    

.  

Extra Example 1. Use L'Hôpital's rule to find  .  

Check in Progress-I 

Note : Please give solution of questions in space give below: 

Q. 1 Define Analytic Function. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Give Definition of Entire Function. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

http://mathfaculty.fullerton.edu/mathews/c2003/ComplexFunLimitMod.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/De_L'Hopital.html
http://mathfaculty.fullerton.edu/mathews/c2003/TaylorLaurentApplicationMod.html
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2.3 REAL CONCEPTS IN COMPLEX 

ANALYSIS. 

   Many of the calculus concepts about derivatives are easy to extended to 

complex functions. For example, in calculus we learned that the 

derivative is the limit of the difference quotients  as 

 goes to zero. We can compare our calculus experience with some 

new and interesting graphs in the complex plane. 

 Extra Example 2. Consider the real function    ,    

which is differentiable, and it's derivative is the limit of 

the real difference quotients .     

 

  We can illustrate convergence of the real difference quotients 

 by comparing graphs for decreasing values of . 

For illustration purposes we plot 

the real graphs    for  .  
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          The graph of  . 

      Figure E.E.3. The graphs 

of    for  .        where  

  and the graph of  .  

  By looking at the above graphs we should get a good feeling about 

visualizing limits of functions over an interval. In particular, we hope 

that this gives you a good feeling about the the formula  

,  where we have used the function  

  in this illustration to get  

.  

  The real function  can be extended into the complex plane by 

replacing the real variable  with the complex variable . The same 

algebraic computations are involved in finding the limit of 

the complex difference quotients.  

Extra Example 3. Consider the complex function    ,    

which is differentiable, and it's derivative is the limit of 

the complex difference quotients 
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.     

 

  We can illustrate convergence of the complex difference 

quotients    by comparing graphs for decreasing values 

of . For illustration purposes we plot the 

graphs    for  

. We cannot draw a 

graph of -dimensional space into -dimensional space, it is necessary 

to choose a domain  in the -plane for our graphs. 

           

     The domain  in the -plane for the following graphs.  
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      The graph of  . 

Figure E.E.4. The unit square in the -plane, and it's images under the 

mappings        for  

,             where  

  and the graph of  . 

  By looking at the above graphs we should get a good feeling about 

visualizing limits of functions in the complex plane.  In particular, we 

hope that this gives you a good feeling about the the 

formula  ,  where we have used the 

function    in this illustration to get  

.  

Remark. The final resting place of the points  

are     ,  

,     ,  and  .  

2.4 GRAPHICAL EXPLORATIONS OF 

POLYNOMIAL APPROXIMATIONS 

  Many concepts from calculus will be extended to complex functions, 

including the approximation of functions. Derivatives will  play an 

important role, just as they did in the calculus of real functions. Let us 
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give a preview of some things we will be studying. The following three 

polynomial approximations are usually discussed in calculus. 

 

    is an approximation to  .  

 

          is an approximation to  

.  

 

is an approximation to  . 
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  In the above graphs, is easy to visualize the real functions and their 

polynomial approximations         

,        

,        .       We assume that the reader is 

familiar with the details for constructing these approximations, or can 

easily find them. 

   However, when we extend these real functions to complex functions, 

we must select an appropriate domain  for each function in the -plane 

in order to construct it's a graph. The following complex function 

examples give illustrations similar to the above real approximations but 

extended into the complex plane.  

 Extra Example 4. Given , from calculus we know that 

,  .  The Maclaurin polynomial of degree  

is  . Hence, the mapping  

,  has the "linear approximation"  . 

           

    The domain  in the -plane for the following graphs.  



Notes 

58 

   

         

    Figure E.E.5. The 

domain    is a square in the -

plane,     and it images under the mappings    and  

.  

    In the last two graphs, one can visualize the complex function 

approximation     .  

Remark 1. This is a trivial example of a "linear transformation" that was 

studied in Section 2.1.  Also,  is a "linear approximation" to 

. Remark 2. Complex Taylor polynomials and 

approximations will be introduced in Section 7.2.  The function 

 is the familiar Maclaurin polynomial approximation of degree 

. Remark 3. Analytic functions that satisfy  are 

conformal mappings and will be studied in Section 10.1.  

Extra Example 5. Given , from calculus we know that  

,  ,  .  The Maclaurin polynomial of 

degree  is  . Hence, the 

mapping  ,  has the "quadratic 

approximation"  . 

http://mathfaculty.fullerton.edu/mathews/c2003/ComplexFunLinearMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/TaylorSeriesMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/ConformalMappingMod.html
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   The domain  in the -plane for the following graphs.  

  

   

                  

    Figure E.E.6. The 

domain    is a rectangle in the -

plane,    and it's images under the mappings    and  

. 

    In the last two graphs, one can visualize the complex function 

approximation    .  
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Remark 4. The mapping  is similar to the 

mapping  that was studied in Section 2.2.  Also, 

 is a "quadratic approximation" to 

. Remark 5. Complex Taylor polynomials and approximations will be 

introduced in Section 7.2.  The function  is the 

familiar Maclaurin polynomial approximation of degree . Remark 

6. Analytic functions that satisfy  are conformal mappings and 

will be studied in Section 10.1.  We will see that the mapping   is 

not conformal at the origin. 

Extra Example 6. Given , from calculus we know that 

the first few derivatives are     ,  ,   ,  

.  The Maclaurin polynomial of degree  

is  . Hence, the 

mapping  ,  has the "cubic 

approximation"  . 

 

   The domain  in the -plane for the following graphs.  

  

http://mathfaculty.fullerton.edu/mathews/c2003/ComplexFunPowerRootMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/TaylorSeriesMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/ConformalMappingMod.html
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    Figure E.E.7. The 

domain    is a square in the -

plane,    and it's images under the mappings    

and  .  

    In the last two graphs, one can visualize the complex function 

approximation     .  

Remark 7. Complex Taylor polynomials and approximations will be 

introduced in Section 7.2.  The function  is the 

familiar Maclaurin polynomial approximation of degree .  

http://mathfaculty.fullerton.edu/mathews/c2003/TaylorSeriesMod.html
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Remark 8. Analytic functions that satisfy  are conformal 

mappings and will be studied in below : 

The terminology "conformal mapping" should have a familiar sound. In 

1569 the Flemish cartographer Gerardus Mercator (1512--1594) devised 

a cylindrical map projection that preserves angles. The Mercator 

projection is still used today for world maps. Another map projection 

known to the ancient Greeks is the stereographic projection. It is also 

conformal (i.e., angle preserving), and we introduced it in Section 

2.5 when we defined the Riemann sphere. In complex analysis, a 

function preserves angles if and only if it is analytic or anti-analytic (i.e., 

the conjugate of an analytic function). A significant result, known as 

Riemann mapping theorem, states that any simply connected domain 

(other than the entire complex plane) can be mapped conformally onto 

the unit disk. 

Check in Progress-II 

Note : Please give solution of questions in space give below: 

Q. 1 Define polynomial Approximation.  

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Define limit of complex analysis. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

2.5 BASIC PROPERTIES OF 

CONFORMAL MAPPINGS 

http://mathworld.wolfram.com/ConformalMapping.html
http://mathfaculty.fullerton.edu/mathews/c2003/ComplexFunReciprocalMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/ComplexFunReciprocalMod.html
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  Let f(z) be an analytic function in the domain D, and let  be a point 

in D. If , then we can express f(z) in the form  (10-1)  

,  where . 

If z is near , then the transformation  has the linear 

approximation    ,  where . 

Because of  when , for points near  the transformation 

 has an effect much like the linear mapping . The effect 

of the linear mapping S is a rotation of the plane through the angle 

, followed by a magnification by the factor 

, followed by a rigid translation by the vector . Consequently, the 

mapping  preserves angle at the point . We now show that 

the mapping  also preserves angles at .  For a smooth curve 

that passes through the point , we use the 

notation    ,  for .  A 

vector  tangent to C at the point  is given by    ,  where 

the complex number  is expressed as a vector. 

  The angle of inclination of  with respect to the positive x axis is    

.  

The image of C under the mapping  is the curve K in 

the w plane given by the 

formula   .  We can use 

the chain rule to show that a vector  tangent to K at the point 

 is given by    .  

The angle of inclination of  with respect to the positive u axis is   

,  where 

.  

  Therefore the effect of the transformation  is to rotate the angle 

of inclination of the tangent vector  at  through the 

angle  to obtain the angle of inclination of the tangent 

vector  at . This situation is illustrated in Figure 10.1. 
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Figure 10.1 The tangents at the points , where f(z) is an analytic 

function and . 

  

  A mapping   is said to be angle preserving, or conformal at , 

if it preserves angles between oriented curves in magnitude as well as in 

orientation. Theorem 10.1 shows where a mapping by an analytic 

function is conformal. 

10.6 CONFORMAL MAPPING 

Theorem 10.1 (Conformal Mapping). Let f(z) be an analytic function 

in the domain D, and let  be a point in D. If , then f(z) is 

conformal at . 

 

Figure 10.2 The analytic mapping  is conformal at the point , 

where . 

http://mathfaculty.fullerton.edu/mathews/c2003/conformalmapping/ConformalMappingFigures/mat1001.gif
http://mathworld.wolfram.com/ConformalTransformation.html
http://mathworld.wolfram.com/ConformalMapping.html
http://mathfaculty.fullerton.edu/mathews/c2003/conformalmapping/ConformalMappingFigures/mat1002.gif
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Example 10.1. Show that the mapping  is conformal at 

the points , ,  and ,  and determine the 

angle of rotation given by  at the given points. 

      

 

Solution. Because , we conclude that the mapping 

 is conformal at all points except , where n is an 

integer.  

Calculation reveals 

that    

 Therefore the angle of rotation is given by    
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 Let f(z) be a nonconstant analytic function. If , then  is 

called a critical point of f(z), and the mapping  is not 

conformal at . The next result shows what happens at a critical point. 

 Theorem 10.2. Let f(z) be analytic at the point . 

If  and , then 

the mapping  magnifies angles at the vertex  by the factor k, 

as shown in Figure 10.3. 

 

Figure 10.3 The analytic mapping  at point , 

where  and . 

http://mathworld.wolfram.com/NonconformalMap.html
http://mathworld.wolfram.com/NonconformalMap.html
http://mathfaculty.fullerton.edu/mathews/c2003/conformalmapping/ConformalMappingFigures/mat1003.gif
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Example 10.2. Show that the mapping  maps the unit 

square  onto the region in the upper half-

plane , which lies under the parabolas    

  and   as shown in Figure 10.4. 

      

 

        Figure 10.4 The mapping . 

Solution. The derivative is , and we conclude that the 

mapping  is conformal for all .  Note that the right angles at 

the vertices , , and  are mapped onto right angles at 

the vertices , , and , respectively. At the point 

, we have  and . 

Hence angles at the vertex  are magnified by the factor . In 

particular, the right angle at  is mapped onto the straight angle 

at . 

http://mathfaculty.fullerton.edu/mathews/c2003/conformalmapping/ConformalMappingFigures/mat1004.gif
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  Another property of a conformal mapping   is obtained by 

considering the modulus of . If  is near , we can use the 

equation     and 

neglect the term . We then have the approximation (10-9)  

.  

  From Equation (10-9), the distance  between the images of 

the points  and  given approximately by . 

Therefore we say that the transformation   changes small 

distances near  by the scale factor .  For example, the scale 

factor of the transformation  near the point  is 

. 

  We also need to say a few things about the inverse 

transformation   of a conformal mapping   near a 

point , where .  A complete justification of the following 

assertions relies on theorems studied in advanced calculus.  

  We express the mapping   in the coordinate form  (10-10)  

.  
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  The mapping in Equations (10-10) represents a transformation from the 

xy plane into the uv plane, and the Jacobian determinant, , is 

defined by  (10-11)  .  

  The transformation in Equations (10-10) has a local inverse, provided 

. Expanding Equation (10-11) and using the Cauchy--

Riemann equations, we obtain    

  

  Consequently, Equations (10-11) and (10-11) imply that a local 

inverse  exists in a neighborhood of the point . The 

derivative of g(w) at  is given by the familiar expression    

 

2.7 SUMMARY 

In this unit we study analytic function and its examples. We study the 

differentiation of complex analysis. We study the entire function and its 

examples. We study conformal mapping and its examples. We study 

rules for differentiation.  
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2.8 KEYWORD 

Conformal: Preserving the correct angles between directions within small 

areas 

Mapping : An operation that associates each element of a given set (the 

domain) with one or more elements of a second set (the range) 

Entire : Not broken, damaged, or decayed 

2.9 QUESTIONS FOR REVIEW 

Q. 1 Given , from calculus we know that  ,  

,  .  

Q. 2 Use Formula (3-12) to calculate .  

Q. 3 Given , from calculus we know that 

,  .  The Maclaurin polynomial of degree  

is  . 

2.10 SUGGESTION READING AND 

REFERENCES 

 Evans, Lawrence C. (1998), Partial Differential Equations, 

American Mathematical Society. 

 Gilbarg, David; Trudinger, Neil, Elliptic Partial Differential 

Equations of Second Order, ISBN 3-540-41160-7. 

 Han, Q.; Lin, F. (2000), Elliptic Partial Differential Equations, 

American Mathematical Society. 

 Jost, Jürgen (2005), Riemannian Geometry and Geometric 

Analysis (4th ed.), Berlin, New York: Springer-

Verlag, ISBN 978-3-540-25907-7. 

 

2.11 ANSWER TO CHECK YOUR 

PROGRESS 

https://en.wikipedia.org/wiki/Lawrence_C._Evans
https://en.wikipedia.org/wiki/David_Gilbarg
https://en.wikipedia.org/wiki/Neil_Trudinger
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-540-41160-7
https://en.wikipedia.org/wiki/Springer-Verlag
https://en.wikipedia.org/wiki/Springer-Verlag
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-25907-7
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 Check In Progress-I 

Answer Q. 1 Check in Section 1.2 

 2 Check in Section 2 

 Check In Progress-II 

Answer Q. 1 Check in section 4 

Answer Q 2 Check in Section 3 
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UNIT 3: APPLICATION OF 

HARMONIC FUNCTION 
 

STRUCTURE 

3.0 Objective 

3.1 Introduction 

3.2 Application of Harmonic Function 

3.3 Poisson’s Integral Formula 

3.4 Mean Value Theorem 

3.5 Maximum and Minimum Principal 

3.6 Summary 

3.7 Keyword 

3.8 Questions for review 

3.9 Suggestion Reading And References 

3.10 Answer to check your progress 

 

3.0 OBJECTIVE 

The techniques described here require that the vector be mapped to a 

point in conguration space [17]. The vector acts in Cartesian space, and 

its conguration can be expressed in terms of joint positions. The path 

planning problem is then posed as the construction of an obstacle-

avoiding path from a start point to a goal point in conguration space (C-

space). A bitmap representation of the workspace space for computing 

the desired harmonic function. Figure 1 illustrates the conversion 

process: a Cartesian space grid is constructed which contains information 

about obstacles and goals. Two bits are used for each grid point: one bit 

designates obstacle points, while the other represents goal regions. Zero 

is used to denote freespace. Both the obstacle and the goal regions can be 
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arbitrarily shaped up to discretization. C-space bitmaps are rst initialized 

to 0 (freespace). Then for each C-space bitmap pixel, the equivalent 

pixels in the Cartesian bitmap are checked using the manipulator forward 

kinematics. If any of the corresponding Cartesian pixels are occupied, 

then the C-space bitmap pixel is marked as occupied. 

3.1 INTRODUCTION 

A wide variety of problems in engineering and physics involve harmonic 

functions, which are the real or imaginary part of an analytic function. 

The standard applications are two-dimensional steady-state temperatures, 

electrostatics, fluid flow, and complex potentials. The techniques of 

conformal mapping and integral representation can be used to construct a 

harmonic function with prescribed boundary values. Noteworthy 

methods include Poisson's integral formulae; the Joukowski 

transformation; and Schwarz-Christoffel transformation. Modern 

computer software is capable of implementing these complex analysis 

methods. 

Harmonic functions are solutions to Laplace's equation. Such functions 

can be used to advantage for potential-eld path planning since they do 

not exhibit spurious local minima. Harmonic functions are shown here to 

have a number of properties which are essential to robotics applications. 

Paths derived from harmonic functions are generally smooth. Harmonic 

functions also o er, a complete path planning algorithm. We show how a 

harmonic function can be used as the basis for a reactive admittance 

control. Such schemes allow incremental updating of the environment 

model. Methods for computing harmonic functions respond well to 

sensed changes in the environment and can be used for control while the 

environment model is being updated. Potential elds were promoted by 

Khatib [4] for robot path planning. Other authors [5; 6; 7; 8; 9; 10] have 

used a variety of potential functions for similar purposes. Unfortunately, 

the usual formulations of potential elds for path planning do not preclude 

the spontaneous creation of minima other than the goal. The robot can 

fall into these minima and achieve a stable conguration short of the goal 

[4; 8; 11; 12; 13]. Koditschek [10] showed that this need not be the case 
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in certain types of domains. Connolly, et al. [2] , and independently 

Akishita, et al. [14] described the application of harmonic functions to 

the path-planning problem. Harmonic functions are solutions to Laplace's 

equation. This paper describes harmonic functions and their application 

to various robot control problems. Harmonic functions are shown here to 

have several useful properties which make them well suited for robotics 

applications: Completeness (up to discretization error in the environment 

model) Robustness in the presence of unanticipated obstacles and errors 

Ability to exhibit dierent useful modes of behavior Rapid computation 

(computed as oltages in a resistive grid [15] ) In addition, harmonic 

functions can provide fast surface normal computation and geometric 

extrapolation. The method described here is a robust form of reactive 

path planning. Other techniques [13; 16] require substantial o-line 

computation which prohibits the system from reacting well to 

unexpected changes in the environment. In contrast, harmonic functions 

allow the model of the environment to be updated incrementally. 

Therefore, incomplete or non-stationary environmental models can be 

modified on-line during execution. 

3.2 APPLICATION OF HARMONIC 

FUNCTION 

Example 2.1. Find the function u(x,y) that is harmonic in the vertical 

strip  and takes on the boundary values     for 

all y, and     for all y, along the vertical lines , 

respectively. 
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Solution. Intuition suggests that we should seek a solution that takes on 

constant values along the vertical lines of the form  and 

that u(x,y) be a function of x alone; that is,   ,  for 

 and for all y. Laplace's equation, , 

implies that , which implies , 

where m and c are constants. The stated boundary conditions 

 and  lead to the solution    

.  The level curves  are 

vertical lines as indicated in Figure 11.1. 

  

Figure 2.1 Level curves of the harmonic function 

. 

Example 2.2. Find the function  that is harmonic in the sector 

 and takes on the boundary values     for x > 

0,     for all points on the ray .  

 

http://mathfaculty.fullerton.edu/mathews/c2003/applicationpreliminary/ApplicationPreliminaryFigures/mat1101.gif
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Solution. Recalling that the function  is harmonic and takes on 

constant values along rays emanating from the origin, we see that a 

solution has the form    ,  where a and b are 

constants. The boundary conditions lead to    

.  The level curves  are rays emanating from the 

origin as indicated in Figure 11.2. 

  

Figure 2.2 Level curves of the harmonic function 

.  

A specific example of the general case. Find the function  that is 

harmonic in the sector  and takes on the boundary 

values     for x > 0,     for all points on the ray 

.  

  

  

http://mathfaculty.fullerton.edu/mathews/c2003/applicationpreliminary/ApplicationPreliminaryFigures/mat1102.gif
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 Example 2.3. Find the function  that is harmonic in the 

annulus  and takes on the boundary values    

  when , and      when 

.  

 

Solution. This problem is a companion to the one in Example 2.2. Here 

we use the fact that  is a harmonic function, for all . The 

solution is   , and the level 

curves  are concentric circles, as illustrated in Figure 

2.3. 

 

Figure 2.3 Level curves of the harmonic function  

.  

 a specific example of the general case. Find the function  that is 

harmonic in the annulus  and takes on the boundary values   

  when , and      when .  

http://mathfaculty.fullerton.edu/mathews/c2003/applicationpreliminary/ApplicationPreliminaryFigures/mat1103.gif
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Applications involving similar formulas will be found. 

  

  

 Poisson's Integral Formula for the Upper Half-Plane 

  The Dirichlet problem for the upper half-plane  is to find a 

function  that is harmonic in the upper half plane and has the 

boundary values , where , is a real-valued function 

of the real variable x. An important method for solving this problem is 

our next result which is attributed to the French mathematician Siméon 

Poisson. 

3.3 POISSON’S INTEGRAL FORMULA 

Theorem 3.1 (Poisson's Integral Formula). Let U be a real-valued 

function that is piecewise continuous and bounded for all real t. The 

function  (11-12)    is harmonic in the 

upper half plane  and has the boundary values    

  wherever  is continuous. 

Proof. 

Equation (11-12) is easy to determine regarding the Dirichlet problem. 

Let t1 < t2 < ··· < tN denote N points that lie along the x-axis. Let t ∗ 0 < 

t∗ 1 < ··· < t∗ N be N + 1 points chosen so that t ∗ k−1 < tk < t∗ k, for k = 

1, 2,..., N, and that U (t) is continuous at each value t ∗ k.  

Φ (x, y) = U (t ∗ N ) + 1 /π ∑   
    U t ∗ k−1 − U (t ∗ k) Arg (z − tk)    (11-

13) 

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Poisson.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Poisson.html
http://mathworld.wolfram.com/PoissonIntegral.html
http://mathfaculty.fullerton.edu/mathews/c2003/poissonintegralplane/PoissonIntegralTheorem.1.pdf
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Example 3.1. Find the function  that is harmonic in the upper 

half-plane , which takes on the boundary values    

  

 

Solution. Using Equation (11-12), we obtain    

 Using techniques from calculus we 

have the integration formula . We 

obtain the solution as follows   

   

  

Using the trigonometric identity , the above 

result can be written as . 

We can verify some of the boundary values by taking limits. 
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Therefore, the function  is 

harmonic in the upper half-plane , and takes on the desired 

boundary values. 

Extra Example 1. Find the function  that is harmonic in the 

upper half-plane , which takes on the boundary values    
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Enter the function U[t] and use the Poisson integral to construct 

.  
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Therefore, the function  is harmonic in the upper half-plane 

, and takes on the desired boundary values. 

Check in Progress-I 

Note : Please give solution of questions in space give below: 

Q. 1 State Poisson’s Integral formula. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 State Poisson’s Integral formula for the upper half-plane. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Example 11.12. Find the function  that is harmonic in the upper 

half-plane , which takes on the boundary values    
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Solution. Using Equation (11-12), we obtain   

  Using 

techniques from calculus we have the integration formulas   

,  and  .  We obtain the solution as 

follows   

  The function  is continuous in the upper half-plane, and on the 

boundary , except at the discontinuities  on the real axis. 

The graph in Figure 11.14 shows this phenomenon. 

 

Figure 11.14 The graph of  with the boundary 

values  

Enter the function U[t] and use the Poisson integral to construct 

.  

http://mathfaculty.fullerton.edu/mathews/c2003/poissonintegralplane/PoissonIntegralFigures/mat1114.gif
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 Using the identities 

, the above result 

can be written as 

. However, for computing values of ArcTan we use the two variable 

forms of the function and the following version of . We can 

verify some of the boundary values by taking limits. 
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Therefore, the function 

 is harmonic in the upper half-plane , and takes on the desired 

boundary values. 

Example 11.13. Use Poisson's Integral formula to find the harmonic 

function  that is harmonic in the upper half-plane , that 

takes on the boundary values      

 

Solution. Using techniques from Section 11.2, we find that the function    

  is harmonic in 

the upper half-plane and has the boundary values 

  

 This function can be added to the one in 

Example 11.12 to obtain the desired result:  

  Figure 11.15 shows the graph of .  

http://mathfaculty.fullerton.edu/mathews/c2003/DirichletProblemMod.html
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Figure 11.15 The graph of . 

This is similar to Example 11.17, but the method of solution is different. 

Using techniques from Section 11.2, the function 

 is harmonic in the 

upper half plane and takes on the boundary values 

 Thus, we should add it to the solution 

 in Example 11.12 to obtain the desired result. However, 

with Mathematica we need to use 

. Enter the function U[t] and 

use the Poisson integral to construct . 

 

 

 

http://mathfaculty.fullerton.edu/mathews/c2003/poissonintegralplane/PoissonIntegralFigures/mat1115.gif
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Therefore, the function 

  

is harmonic in the upper half-plane , and takes on the 

desired boundary values. 

Extra Example 2. Use Poisson's Integral formula to find the harmonic 

function  that is harmonic in the upper half-

plane , that takes on the boundary values    
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Therefore, the function  is harmonic in the upper half-

plane , and takes on the desired boundary values. 

 

3.4 THE MEAN-VALUE THEOREM 

The Mean Value Theorem is one of the most important theoretical tools 

in Calculus. It states that if f(x) is defined and continuous on the interval 

[a,b] and differentiable on (a,b), then there is at least one number c in the 

interval (a,b) (that is a < c < b) such that 
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The special case, when f(a) = f(b) is known as Rolle's Theorem. In this 

case, we have f '(c) =0. In other words, there exists a point in the interval 

(a,b) which has a horizontal tangent. In fact, the Mean Value Theorem 

can be stated also in terms of slopes. Indeed, the number  

 

 is the slope of the line passing through (a,f(a)) and (b,f(b)). So the 

conclusion of the Mean Value Theorem states that there exists a 

point  such that the tangent line is parallel to the line passing 

through (a,f(a)) and (b,f(b)). (see Picture) 

 

Example. Let , a = -1and b=1. We have 

 

 

On the other hand, for any , not equal to 0, we have  

 

So the equation  

 

does not have a solution in c. This does not contradict the Mean Value 

Theorem, since f(x) is not even continuous on [-1,1]. 
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Remark. It is clear that the derivative of a constant function is 0. But 

you may wonder whether a function with derivative zero is constant. The 

answer is yes. Indeed, let f(x) be a differentiable function on an interval I, 

with f '(x) =0, for every . Then for any a and b in I, the Mean 

Value Theorem implies 

 

 for some c between a and b. So our assumption implies 

 

 

Thus f(b) = f(a) for any aand b in I, which means that f(x) is constant. 

Exercise 1. Show that the equation 

2x
3
 + 3x

2
 + 6x + 1 = 0 

 has exactly one real root. 

Let f(x) = 2x
3
 + 3x

2
 + 6x + 1. We have f(0)=1 and f(-1) = -4. So the 

Intermediate Value Theorem shows that there exists a point c between -1 

and 0 such that f(c) =0. Consequently our equation has at least one real 

root. 

Let us now show that this equation has also at most one real root. 

Assume not, then there must exist at least two roots c1and c2, 

with c1 < c2. Then we have f(c1) =0 and f(c2) =0. Rolle's Theorem implies 

the existence of a point c between c1 and c2 such that 

f'(c) = 6c
2
 + 6c + 6 =0. 

 But the quadratic equation 6c
2
 + 6c + 6 =0 does not have real roots, 

yielding a contradiction to our assumption that f(x) had at least two roots. 

Conclusion: our original equation has exactly one real root. 
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Exercise 2. Show that 

 

for all real numbers a and b. Try to find a more general statement. 

Answer to Exercise 2 

Set . Then we have . The 

inequality clearly holds when a=b. For any numbers a and b, 

with , the Mean Value Theorem implies 

 

  

for some c between a and b. Since , we get  

 

  

which obviously gives the desired inequality. In general, if f(x) is a 

differentiable function on an interval I with  for 

any , then we have  
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 for any . 

Example 3 Suppose that we know that f(x) is continuous and 

differentiable on [6,15] Let’s also suppose that we know 

that f(6)=−2f(6)=−2 and that we know that f′(x)≤10. What is the largest 

possible value for f(15)? 

Let’s start with the conclusion of the Mean Value Theorem. 

f(15)−f(6)=f′(c)(15−6) 

Plugging in for the known quantities and rewriting this a little gives, 

f(15)=f(6)+f′(c)(15−6)=−2+9f′(c) 

Now we know that f′(x)≤10 so in particular we know that f′(c)≤10. This 

gives us the following, 

f(15)=−2+9f′(c)≤−2+(9)10=88 

All we did was replace f′(c) with its largest possible value. 

This means that the largest possible value for f(15) is 8. 

Example 4 Suppose that we know that f(x) is continuous and 

differentiable everywhere. Let’s also suppose that we know that f(x) has 

two roots. Show that f′(x) must have at least one root. 

 

It is important to note here that all we can say is that f′(x) will have at  

least one root. We can’t say that it will have exactly one root. So don’t 

confuse this problem with the first one we worked on. 

This is actually a fairly simple thing to prove. Since we know 

that f(x) has two roots let’s suppose that they are aa and b Now, by 

assumption we know that f(x)f(x) is continuous and differentiable 

everywhere and so, in particular, it is continuous on [a,b] and 

differentiable on (a,b). 
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Therefore, by the Mean Value Theorem there is a number cc that is 

between aa and bb (this isn’t needed for this problem, but it’s true so it 

should be pointed out) and that, 

f′(c)=f(b)−f(a)b−a 

But we now need to recall that aa and bb are roots of f(x)f(x) and so this 

is, 

f′(c)=0−0b−a=0 

Or, f′(x) has a root at x=c 

Again, it is important to note that we don’t have a value of c. We have  

only shown that it exists. We also haven’t said anything about c being the 

only root. It is completely possible for f′(x) to have more than one root. 

It is completely possible to generalize the previous example significantly. 

For instance if we know that f(x) is continuous and differentiable 

everywhere and has three roots we can then show that not only 

will f′(x) have at least two roots but that f′′(x) will have at least one root. 

We’ll leave it to you to verify this, but the ideas involved are identical to 

those in the previous example. 

We’ll close this section out with a couple of nice facts that can be proved 

using the Mean Value Theorem. Note that in both of these facts we are 

assuming the functions are continuous and differentiable on the 

interval [a,b]. 

Fact. If f′(x)=0f′(x)=0 for all xx in an interval (a,b)(a,b) then f(x)f(x) is 

constant on (a,b)(a,b). 

This fact is very easy to prove so let’s do that here. 

First, notice that because we are assuming the derivative exists 

on (a,b) we know that f(x) is differentiable on (a,b). In addition, 

we know that if a function is differentiable on an interval then it is also 

continuous on that interval and so f(x) will also be continuous on (a,b). 

http://tutorial.math.lamar.edu/Classes/CalcI/DefnOfDerivative.aspx#Deriv_Defn_DifCont
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Now, take any two x’s in the interval (a,b), say x1 and x2. Then 

since f(x) is continuous and differentiable on (a,b) it must also be 

continuous and differentiable on [x1,x2]. This means that we can apply 

the Mean Value Theorem for these two values of x. Doing this gives, 

f(x2)−f(x1)=f′(c)(x2−x1) 

where x1<c<. But by assumption f′(x)=0 for all x in an interval (a,b) and  

so, in particular, we must have, 

f′(c)=0 

Putting this into the equation above gives, 

f(x2)−f(x1)=0⇒f(x2)=f(x1) 

Now, since x1 and x2 where any two values of x in the  

interval (a,b) we can see that we must have f(x2)=f(x1) for 

all x1 and x2 in the interval and this is exactly what it means for a 

function to be constant on the interval and so we’ve proven the fact. 

Check in Progress-I 

Note : Please give solution of questions in space give below: 

Q. 1 Define Mean Value Theorem. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Give statement of mean value theorem. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 
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3.5 MAXIMUM AND MINIMUM 

PRINCIPAL 

In mathematics, the maximum modulus principle in complex 

analysis states that if f is a holomorphic function, then the modulus |f | 

cannot exhibit a true local maximum that is properly within 

the domain of f. 

In other words, either f is a constant function, or, for any point z0 inside 

the domain of f there exist other points arbitrarily close to z0 at which |f | 

takes larger values. 

Formal statement 

Let f be a function holomorphic on some connected open subset D of 

the complex plane ℂ and taking complex values. If z0 is a point in D such 

that 

|f(Z)|   |f(Zo)| 

for all z in a neighborhood of z0, then the function f is constant on D. 

By switching to the reciprocal, we can get the minimum modulus 

principle. It states that if f is holomorphic within a bounded domain D, 

continuous up to the boundary of D, and non-zero at all points, then |f(z)| 

takes its minimum value on the boundary of D. 

Alternatively, the maximum modulus principle can be viewed as a 

special case of the open mapping theorem, which states that a 

nonconstant holomorphic function maps open sets to open sets. If |f| 

attains a local maximum at z, then the image of a sufficiently small open 

neighborhood of z cannot be open. Therefore, f is constant. 

1. U¯ is compact because U is bounded, hence ff attains its maximum 

on U¯. If ff is non-constant then it is an open mapping, hence does 

not have a local maximum in U. Therefore 

f(z)|≤max{|f(w)|:w∈∂U} 

for all z∈U, since this inequality certainly holds if ff is constant. 

2. If f(w)=0f(w)=0 for some w∈∂Uw∈∂U then the inequality 

0|f(z)|<min{|f(w)|:w∈∂U}=0 

https://en.wikipedia.org/wiki/Connected_set
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Complex_plane
https://en.wikipedia.org/wiki/Neighborhood_(topology)
https://en.wikipedia.org/wiki/Multiplicative_inverse
https://en.wikipedia.org/wiki/Boundary_(topology)
https://en.wikipedia.org/wiki/Open_mapping_theorem_(complex_analysis)
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is impossible, so we may assume that ff does not vanish on ∂U. If f has 

no zeros in U, then 1f is holomorphic in U and continuous on U¯, 

and it follows from part (1) applied to 1f that 

f(z)|≥min{|f(w)|:w∈∂U} 

for all z∈U. Therefore f(z)|<min{|f(w)|:w∈∂U} for some z∈U, 

then f must have a zero in U. 

Using Gauss's mean value theorem 

Another proof works by using Gauss's mean value theorem to "force" all 

points within overlapping open disks to assume the same value. The 

disks are laid such that their centers form a polygonal path from the 

value where f(z) is maximized to any other point in the domain, while 

being totally contained within the domain. Thus the existence of a 

maximum value implies that all the values in the domain are the same, 

thus f(z) is constant. 

Physical interpretation 

A physical interpretation of this principle comes from the heat equation. 

That is, since log |f(z)| is harmonic, it is thus the steady state of a heat 

flow on the region D. Suppose a strict maximum was attained on the 

interior of D, the heat at this maximum would be dispersing to the points 

around it, which would contradict the assumption that this represents the 

steady-state of a system. 

Major results 

One of the central tools in complex analysis is the line integral. The line 

integral around a closed path of a function that is holomorphic 

everywhere inside the area bounded by the closed path is always zero, as 

is stated by the Cauchy integral theorem. The values of such a 

holomorphic function inside a disk can be computed by a path integral on 

the disk's boundary (as shown in Cauchy's integral formula). Path 

integrals in the complex plane are often used to determine complicated 

real integrals, and here the theory of residues among others is applicable 

(see methods of contour integration). A "pole" (or isolated singularity) of 

a function is a point where the function's value becomes unbounded, or 

"blows up". If a function has such a pole, then one can compute the 
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function's residue there, which can be used to compute path integrals 

involving the function; this is the content of the powerful residue 

theorem. The remarkable behavior of holomorphic functions near 

essential singularities is described by Picard's Theorem. Functions that 

have only poles but no essential singularities are 

called monomorphic. Laurent series are the complex-valued equivalent 

to Taylor series but can be used to study the behavior of functions near 

singularities through infinite sums of better-understood functions, such 

as polynomials. 

A bounded function that is holomorphic in the entire complex plane must 

be constant; this is Lowville’s. It can be used to provide natural and short 

proof for the fundamental theorem of algebra which states that 

the field of complex numbers is algebraically closed. 

If a function is holomorphic throughout a connected domain then its 

values are fully determined by its values on any smaller subdomain. The 

function on the larger domain is said to be analytically continued from its 

values on the smaller domain. This allows the extension of the definition 

of functions, such as the Riemann zeta function, which are initially 

defined in terms of infinite sums that converge only on limited domains 

to almost the entire complex plane. Sometimes, as in the case of 

the natural logarithm, it is impossible to analytically continue a 

holomorphic function to a non-simply connected domain in the complex 

plane but it is possible to extend it to a holomorphic function on a closely 

related surface known as a Riemann surface. 

All this refers to complex analysis in one variable. There is also a very 

rich theory of complex analysis in more than one complex dimension in 

which the analytic properties such as power series expansion carry over 

whereas most of the geometric properties of holomorphic functions in 

one complex dimension (such as conformity) do not carry over. 

The Riemann mapping theorem about the conformal relationship of 

certain domains in the complex plane, which may be the most important 

result in the one-dimensional theory, fails dramatically in higher 

dimensions. 
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A major use of certain complex spaces is in quantum mechanics as wave 

functions. 

Application  

 The fundamental theorem of algebra. 

 Schwarz's lemma, a result which in turn has many generalizations 

and applications in complex analysis. 

 The Phragmén–Lindelöf principle, an extension to unbounded 

domains. 

 The Borel–Carathéodory theorem, which bounds an analytic function 

in terms of its real part. 

 The Hadamard three-lines theorem, a result of the behavior of 

bounded holomorphic functions on a line between two other parallel 

lines in the complex plane. 

3.6 SUMMARY 

In this unit, we study the application of harmonic function and its 

properties with examples. We study Poisson’s Integral Formula and 

Poisson’s Integral formula for the upper half-plane. We study minimal 

and maximum principal and its properties.  

3.7 KEYWORD 

Holomorphic : In mathematics, a holomorphic function is a complex-

valued function of one or more complex variables that is, at every point 

of its domain, complex differentiable in a neighborhood of the point 

Plane : A flat surface on which a straight line joining any two points on it 

would wholly lie 

Conformal : Preserving the correct angles between directions within 

small areas (though distorting distances). 

3.8 QUESTIONS FOR REVIEW  

https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
https://en.wikipedia.org/wiki/Schwarz%27s_lemma
https://en.wikipedia.org/wiki/Phragm%C3%A9n%E2%80%93Lindel%C3%B6f_principle
https://en.wikipedia.org/wiki/Borel%E2%80%93Carath%C3%A9odory_theorem
https://en.wikipedia.org/wiki/Hadamard_three-lines_theorem
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Q. 1 If f′(x)=0 f′(x)=0 for all x in an interval (a,b) then f(x) is constant 

on (a,b). 

Q. 2 If f′(x)=g′(x) for all xx in an interval (a,b) then in this interval we 

have f(x)=g(x)+c where c is some constant.   

Q. 3 Theorem:(Minimum Principle) Let D be a domain and 

u : D → R be continuous and satisfy the MVP on D. If 

∃α ∈ D such that u(z ) ≥ u(α), then u is a constant function. 

Q. 4 Let D be a domain and u : D → R be harmonic 

function on D. If ∃α ∈ D such that u(z ) ≥ u(α), then u is a 

constant function. 

Q. 5 Every harmonic function on a domain have the MVP 
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 Check In Progress-I 

Answer Q. 1 Check in Section 2 

 2 Check in Section 2 

 Check In Progress-II 

Answer Q. 1 Check in section 4 

Answer Q 2 Check in Section 4 
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UNIT 4: THE DIRICHLET PROBLEM 

FOR THE UNIT DISK AND FOURIER 

SERIES 
 

STRUCTURE 

4.0 Objective 

4.1 Introduction 

4.1.1 History 

4.2 Method of Solution 

4.2.1 Extended Fourier Series in the unit disk 

4.2.2 An approximation using a partial sum 

4.3 Solution using Poisson's integral 

4.3.1 Solution using N-Value Dirichlet formula 

4.3.2 Piecewise Continuous 

4.3.3 Fourier Cosine Series 

4.4 Termwise Integration 

4.5.1 Characterization Of Harmonic Functions By Mean Value 

Property 

4.5 The Polar Form of a Complex Number 

4.6 Summary 

4.7 Keyword 

4.8 Questions for review 

4.9 Suggestion Reading and References 

4.10 Answer to check your progress 

 

http://mathfaculty.fullerton.edu/mathews/c2003/DirichletProblemDiskMod.html
http://mathfaculty.fullerton.edu/mathews/c2003/DirichletProblemDiskMod.html
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4.0 OBJECTIVE 

 Learn Dirichlet Problem For the Unit Disk 

 Learn solution of Dirichlet Problem 

 Learn Fourier Series 

 Working with example of Fourier series 

 Learn Characterization of mean value property  

4.1 INTRODUCTION: DIRICHLET 

PROBLEM 

In mathematics, a Dirichlet problem is the problem of finding 

a function which solves a specified partial differential equation (PDE) in 

the interior of a given region that takes prescribed values on the 

boundary of the region. 

The Dirichlet problem can be solved for many PDEs, although originally 

it was posed for Laplace's equation. In that case the problem can be 

stated as follows: 

Given a function f that has values everywhere on the boundary of a 

region in R
n
, is there a unique continuous function u twice continuously 

differentiable in the interior and continuous on the boundary, such 

that u is harmonic in the interior and u = f on the boundary? 

This requirement is called the Dirichlet boundary condition. The main 

issue is to prove the existence of a solution; uniqueness can be proved 

using the maximum principle. 

 4.1.2 History 

The Dirichlet problem goes back to George Green who studied the 

problem on general domains with general boundary conditions in 

his Essay on the Application of Mathematical Analysis to the Theories of 

Electricity and Magnetism, published in 1828. He reduced the problem 

into a problem of constructing what we now call Green's functions, and 

argued that Green's function exists for any domain. His methods were not 

rigorous by today's standards, but the ideas were highly influential in the 

subsequent developments. The next steps in the study of the Dirichlet's 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Laplace%27s_equation
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Harmonic_function
https://en.wikipedia.org/wiki/Dirichlet_boundary_condition
https://en.wikipedia.org/wiki/Maximum_principle
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problem were taken by Karl Friedrich Gauss, William Thomson (Lord 

Kelvin) and Peter Gustav Lejeune Dirichlet after whom the problem was 

named and the solution to the problem (at least for the ball) using the 

Poisson kernel was known to Dirichlet (judging by his 1850 paper 

submitted to the Prussian academy). Lord Kelvin and Dirichlet suggested 

a solution to the problem by a variational method based on the 

minimization of "Dirichlet's energy". According to Hans Freudenthal (in 

the Dictionary of Scientific Biography, vol 11), Bernhard Riemann was 

the first mathematician who solved this variational problem based on a 

method which he called Dirichlet's principle. The existence of a unique 

solution is very plausible by the 'physical argument': any charge 

distribution on the boundary should, by the laws of electrostatics, 

determine an electrical potential as solution. However, Karl 

Weierstrass found a flaw in Riemann's argument, and a rigorous proof of 

existence was found only in 1900 by David Hilbert, using his direct 

method in the calculus of variations. It turns out that the existence of a 

solution depends delicately on the smoothness of the boundary and the 

prescribed data. 

4.2 METHODS OF SOLUTION 

For bounded domains, the Dirichlet problem can be solved using 

the Perron method, which relies on the maximum principle for sub 

harmonic functions. This approach is described in many text books. It is 

not well-suited to describing smoothness of solutions when the boundary 

is smooth. Another classical Hilbert space approach through Sobolev 

spaces does yield such information.
[2]

 The solution of the Dirichlet 

problem using Sobolev spaces for planar domains can be used to prove 

the smooth version of the Riemann mapping theorem. Bell (1992) has 

outlined a different approach for establishing the smooth Riemann 

mapping theorem, based on the reproducing kernels of Szegő and 

Bergman, and in turn used it to solve the Dirichlet problem. The classical 

methods of potential theory allow the Dirichlet problem to be solved 

directly in terms of integral operators, for which the standard theory 

of compact and Freehold is applicable. The same methods work equally 

for the Neumann problem. 
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The Dirichlet Problem for the Unit Disk 

  We have emphasized practical applications of harmonic functions to 

steady state temperatures, electrostatics. In Section 1.2 we introduced the 

N-Value Dirichlet problem, and showed how to solve Laplace's equation 

,  in the upper-half plane, for a harmonic function 

 that has certain specified boundary values on the real axis.  

Now we will develop the solution to the Dirichlet problem in the closed 

unit disk .  

 

Dirichlet Problem for the Unit Disk   Given a real valued function 

 that is both piecewise continuous and a bounded function.  Let 

 be considered as boundary values on the unit 

circle , in the sense that  (1.0)  

, at points  on 

the unit circle. The Dirichlet problem for the closed unit disk 

 is to extend  to be    

 for 

, where  is harmonic 

in the unit disk and take on the boundary values (1.1)  at points where 

 is continuous.   

  Our first method of solution uses the Fourier Series representation for 

  

  

4.2.1 Extended Fourier Series in the unit disk 

Theorem 2.1 (Extended Fourier Series in the unit disk).  Let  be 

the boundary values on the unit circle ,  (1) 

.  If  has the Fourier series 

representation     
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,  then (2) 

,  solves 

the Dirichlet problem and is a harmonic function in the unit disk 

.  

  We can motivate if we are allowed to make the following claim:  The 

series in (1.1) takes on the boundary values in Equation (1.1) at points on 

 where the radial limits exist, that is    

  Furthermore, Exercise 12 in Section 3.3 shows that each of the terms, 

  and    are harmonic, and so it is 

reasonable to conclude that the infinite series representing 

 in Equation (2) will be harmonic.  Remark. The radial 

limits will exist except at the finite number of points where  is 

discontinuous.  There are details regarding the convergence of the series 

and the existence of radial limits that are left for advanced study. 

Example 2.2. Find the function  that is 

harmonic in the unit disk   and takes on the 

boundary values  .  

Solution. 
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 we write the Fourier series for 

,     . 

for the extended Fourier series solution of the Dirichlet problem, we 

obtain     

.  

  The series representations of   take on the prescribed 

boundary values at points where  is continuous. The boundary 

function  is discontinuous at , which corresponds to ; 

which are points where  was not prescribed. The approximations 

  and  

,  and 

the true 

solutions    and  

  are shown in the figures 

below.  
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    Figure A. The functions  

and  .  
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    Figure.B. The functions  

and  .  

we have the Fourier series for 

,     . 

for the extended Fourier series solution of the Dirichlet problem, we 

obtain     

.  

4.2.2 An approximation using a partial 

sum.   Summing up the first seven terms we get the 

approximations    and  .  

 

 

 

 

 

 

 

  

The functions  

and  .  
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Summing up all of the terms we get the boundary value 

function    on the unit circle 

,  and the harmonic 

function    in the unit 

disk  .   

 

 

 

 

Aside. The Maple commands are similar  

       

 

       

   

We can use Mathematica to plot the boundary function  and 

harmonic function  .  

 The boundary 

function  

,       

and the harmonic 

function  
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when we sum the infinite series we get solutions involving the logarithm 

function.  

Remark 2. the other form of the solution will be similar. 

 

 

 

 

 

 

 

 

  Poisson's integral formula for the upper half-plane, that was introduced 

It shows that the value of the harmonic function  

inside the unit disk is a special "average of the values  on the 

boundary."  In the integrand the function  is multiplied by 

the Poisson kernel  which 

includes the variables . 

Theorem 12.8 (Poisson Integral Formula in the unit disk).  Let  

be the boundary values on the unit circle ,  

(12.10.2)  .  If  is both 

piecewise continuous and bounded, then  

, 

, solves the Dirichlet problem and is a harmonic 

function in the unit disk .  Observation. The 

integrand is taken over the unit circle where the parameter of integration 

is , and the numerator includes the function . 
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Corollary 1 (N-Value Dirichlet solution for the unit disk).  Assume 

that .  If  is the boundary 

value function on the unit circle ,  

  then  

,  solves the Dirichlet problem and is a harmonic function in the unit disk 

.  

Proof. Use the indefinite integral    

. 

Then     

 

Remark. When applying formula it is necessary to pay attention and to 

use appropriate branches and to beware of branch cuts. 

 Extra Example 1. Find the function  that is 

harmonic in the unit disk ,  and takes on the 

boundary values    
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    Figure 1. The graphs of    and  

.   

 Solution using Fourier series. we showed that the Fourier series for 

 can be written 

as     

.  

to construct the extended Fourier series solution of the Dirichlet problem. 

Therefore, the Fourier series solution is   

 

Check in Progress-I 

Note : Please give solution of questions in space give below: 

Q. 1 State Dirichlet Problem. 

Solution : 

……………………………………………………………………………



Notes 

113 

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Define Extended Fourier in The Unit Disk. 

Solution : 

……………………………………………………………………………

…………………………………………………………………………… 

4.3 Solution using Poisson's integral. 

 Use the known anti-

derivative    a

nd 

get     

  Therefore, the Poisson integral solution 

is     

 

4.3.1 Solution using N-Value Dirichlet formula.   Set 

 and  and then use 

the formula and get     
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 Therefore, the N-Value Dirichlet solution 

is     

 

  Remark. This is just a straightforward way of calculating the Poisson 

integral solution, and is recommended for working some of the exercises. 

Extra Example 2. Find the function  that is 

harmonic in the unit disk  ,  and takes on the 

boundary values  .  

         

    Figure 2. The graphs of    and  

.   

where we showed that the Fourier series for  can be written as  
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.  for the extended Fourier series solution of the Dirichlet problem, and 

get  

. Remarks. Some integrals of the form   are 

readily available.  For    the computer algebra 

systems Mathematica and Maple can be used to obtain the following 

formulae.    

           

          

 The software Maple will also compute the above integrals, but the 

Maple syntax will use the notation  and .  The 

first 

integral    can 

easily be verified using techniques from calculus.  

Caveat. It is beyond the scope of this book to use the other two integrals 

involving .  

In this chapter we show how Fourier Series, the Fourier Transform, and 

the Laplace Transform are related to the study of complex analysis.  

First, we will introduce the Fourier series for a real-valued function 

 of the real variable . Then we discuss Fourier transforms.  

Finally, we develop the Laplace transform and the complex variable 

techniques for finding its inverse. Our goal is to apply these ideas to 

solving problems, so many of the theorems are stated without proof. 

  Let  be a real-valued function that is periodic with period , that 

is   . 
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One such function 

is  . Its graph is 

obtained by repeating the portion of the graph in any interval of length 

, as shown in Figure 12.1. 

     

      Figure 3. A function  with period . 

  

 Familiar examples of real functions that have period , are 

, where n is an integer.  These examples raise the 

question of whether any periodic function can be represented by a sum of 

terms involving ,  where  are real 

constants. As we soon demonstrate, the answer to this question is often 

yes. 

4.3.2 Piecewise Continuous 

 Definition 12.1 (Piecewise Continuous).  The function  

is piecewise continuous on the closed interval , if there exists 

values   with  such that  is 

continuous in each of the open intervals  

,  for    and has left-hand and right-hand limits at each of 

the values  ,  for  .  

   We use the symbols  and  for the left-hand and right-hand 

limit, respectively, of a function  as  approaches the point .  The 

graph of a piecewise continuous function is illustrated in Figure 12.2 
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below, where the function  is      

 

     

     Figure 4. A piecewise continuous function  over the interval 

. 

The left-hand and right-hand limits at , , and  are 

easily determined: 

  At , the left-hand limit 

is  ,     and the 

right-hand limit is  . 

  At , the left-hand limit is  

     and the right-hand limit 

is  . 

  At , the left-hand limit is  

,     and the right-hand limit 

is  . 
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Definition (Fourier Series).  If  is periodic with period  and is 

piecewise continuous on , then the Fourier Series  for 

 is  ,  where the 

coefficients  are given by the so-called Euler's formulae:  

,  and  

.  

 We introduced the factor  in the constant term  on the right side 

of Equation (1.1) for convenience, so that we can obtain  from the 

general formula in Equation (111) by setting .  We explain the 

reasons for this strategy shortly. Theorem 1.1 deals with convergence of 

the Fourier series. 

  

Theorem (Fourier Expansion).  Assume that  is the Fourier Series 

for .  If  are piecewise continuous on , 

then  is convergent for all .  The 

relation    holds for all  where  is 

continuous.  If  is a point of discontinuity of , then      

,  where  denote the left-hand 

and right-hand limits, respectively.  With this understanding, we have the 

Fourier Series expansion:     

.  

Example. The function  ,  extended periodically 

by the equation  , has the Fourier series expansion    

.  

Solution. 
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  and integrating by parts, we obtain    

,  for  

. The coefficient  is obtained with the separate 

computation    .  we get    

,  for  . 

Substituting the coefficients  and  into Equation 

(12.1) produces the required solution    

.  The 

graphs of    and the first three partial sums  ,  

, and  

  are shown in Figure 12.3. 

     

    Figure. The function , and the approximations , 

, and .  

Theorem.  If  have Fourier series representations, then 

their sum    has a Fourier series representation, and 
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the Fourier coefficients of  are obtained by adding the 

corresponding coefficients of .  

 4.3 Fourier Cosine Series 

Theorem (Fourier Cosine Series).  Assume that  is an even 

function and has period .  Here the Fourier series for   involves 

only the cosine terms, , and we write    

, 

where     .  

Proof. 

 Theorem (Fourier Sine Series).  Assume that  is an odd function 

and has period .  Here the Fourier series for   involves only the 

sine terms, , and we write    

,  

where     .  

Check in Progress-II 

Note : Please give solution of questions in space give below: 

Q. 1 Define Fourier Cosine Series. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 State Fourier Expansion. 

Solution : 

……………………………………………………………………………

…………………………………………………………………………… 

http://mathfaculty.fullerton.edu/mathews/c2003/fourierseries/FourierSeriesComplexMod/Links/FourierSeriesComplexMod_lnk_6.html
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4.5 TERMWISE INTEGRATION 

Theorem (Termwise Integration).  Assume that  has the Fourier 

series representation      .  

Then the integral of  has a Fourier series representation which can 

be obtained by termwise integration of the Fourier series of , that is      

, where 

we have used the expansion  .   

Theorem 12.6 (Termwise Differentiation).  Assume that both 

 have Fourier series representation and that    

.  Then  can be 

obtained by termwise differentiation of , that is    

.   

Example The function  ,  extended 

periodically by the equation  , has the Fourier series 

expansion    

,  which can be written in the alternative form    

.  

Solution. 

  The function  is an even function; hence we can use Theorem 

11.3 to conclude that  for all  and that    
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,  for  .  The coefficient  is obtained with the separate 

computation    . 

Using the  and produces the required solution. Therefore, we 

have the found the Fourier series expansion    

.  It is easy to see that  for all , and we can 

express  in the 

form     

.  Therefore,    .  

The graphs of    and the first two partial 

sums  

,  and    are shown below. 

      

    Figure.a. The function , and the approximations , 

and . 

ind the Fourier Series  , by 

computing the coefficients with Euler's formulae:  

,  and  (

.  
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First, calculate .    

  

Then     

 Second, calculate .    

 Alternately,  is an even function so that   is 

an odd function, and       for all  
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. Then  shows that     , where the 

coefficients can be computed with the special 

formula      .  

Now calculate       

    

  

 Get The Answer. 

 Therefore,     .  
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 Extra Example 1.  Given   extended 

periodically by the equation  ,  find the Fourier series 

expansion.  

      

Find the Fourier Series  , by 

computing the coefficients with Euler's formulae:  

,  and  

.  

First, calculate .    

  



Notes 

126 

Then     

 Second, calculate .    

  

Alternately,  is an odd function so that 

  is an odd function, 
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and       for all  .  shows that     

,  where the coefficients can be computed with 

the special formula      .  

Now calculate       

 Get The Answer. 

 Therefore,     .  

4.5.1 Characterization Of Harmonic Functions By 

Mean Value Property 

   Let  be a continuous real-valued function of the two real 

variables  that is defined on a domain .  (Recall from Section 

1.6 that a domain  is an connected and open set of points in the 

complex plane.)  The partial differential equation 

  ,  is known as Laplace's equation and is 

sometimes referred to as the potential equation.  

If    are 
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all continuous, and if  satisfies Laplace's equation, then  

is called a harmonic function.  

  In calculus we might have been asked to show that polynomial 

functions like     and ,  and 

transcendental functions like     and 

,  and     and 

, are all harmonic functions. These pairs of 

functions are not chosen at random, and there is an intimate relationship 

between them, they are called the conjugate "harmonic functions." It is 

our goal to understand how this concept is tied in with analytic functions. 

  On the practical side, harmonic functions are important in the areas of 

applied mathematics, engineering, and mathematical physics.  Harmonic 

functions are used to solve problems involving steady state temperatures, 

two-dimensional electrostatics, and ideal fluid flow.  we will show how 

complex analysis techniques are used to solve these problems.  For 

example, the function    

,  

is harmonic in the upper half plane and takes on the boundary values    

  

 and   .  

4.6 THE POLAR FORM OF A COMPLEX 

NUMBER 

The fundamental trigonometric identity (i.e the Pythagorean theorem) is 

 

From this we can see that the complex numbers 
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are points on the circle of radius one centered at the origin. 

Think of the point  moving counterclockwise around the 

circle as the real number  moves from left to right. Similarly, the point 

moves clockwise if  decreases. And whether  increases or decreases, 

the point returns to the same position on the circle whenever  changes 

by  or by  or by  where k is any integer. 

Exercise: Verify that 

 

Exercise: Prove de Moivre's formula 

 

Now picture a fixed complex number on the unit circle 

 

Consider multiples of z by a real, positive number r. 

 

As r grows from 1, our point moves out along the ray whose tail is at the 

origin and which passes through the point z. As r shrinks from 1 toward 

zero, our point moves inward along the same ray toward the origin. The 

modulus of the point is r. We call the angle  which this ray makes with 

the x-axis, the argument of the number z. All the numbers rz have the 

same argument. We write 

 

Just as a point in the plane is completely determined by its polar 

coordinates  , a complex number is completely determined by its 

modulus and its argument. 
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Notice that the argument is not defined when r=0 and in any case is only 

determined up to an integer multiple of . 

Why not just use polar coordinates? What's new about this way of 

thinking about points in the plane 

4.7 SUMMARY 

We study in this unit Cosine and Sine for harmonic function. We study 

an approximation using Partial sum.We study extended Fourier series in 

the unit disk. We study piecewise continuous and Fourier cosine series.  

4.8 KEYWORD 

Caveat : a notice, especially in a probate, that certain actions may not be 

taken without informing the person who gave the notice 

Piecewise : a piecewise-defined function (also called a piecewise function 

or a hybrid function) is a function defined by multiple sub-functions, 

each sub-function applying to a certain interval of the main function's 

domain, a sub-domain 

Argument : a reason or set of reasons given in support of an idea, action 

or theory 

4.9 QUESTIONS FOR REVIEW  

Q. 1 Let    be an analytic 

function on a domain .  Then both   and  are harmonic 

functions on . In other words, the real and imaginary parts of an 

analytic function are harmonic. 

Proof. Since  is differentiable on , the Cauchy-Riemann 

equations ) imply that      and  

Q. 2 Show that    is a harmonic function and find a 

conjugate harmonic function  , and an analytic function 
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Q. 3 Show that    is a harmonic conjugate 

of   

Q. 4 Given the harmonic functions    and  

,  and the analytic function  

.  

Q. 5 Let    be harmonic in an -neighborhood of the point 

.  Then there exists a conjugate harmonic 

function    defined in this neighborhood such that    

,  is an analytic function. 

Q. 6 Show that the harmonic function    is the scalar 

potential function for the fluid flow    .  

Q. 7 Assume that  is the Fourier Series for .  If 

 are piecewise continuous on , then  is 

convergent for all .  The relation    holds for all 

 where  is continuous.  If  is a point of 

discontinuity of , then      ,  

where  denote the left-hand and right-hand limits, 

respectively.  With this understanding, we have the Fourier Series 

expansion:     

Q. 8 The function  ,  extended periodically by 

the equation  ,  has the Fourier series expansion     

 

Q. 9 Assume that  is an even function and has period .  Here the 

Fourier series for   involves only the cosine terms, 

, and we write    ,   
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Q. 10 Assume that  has the Fourier series representation      

.  Then the integral of  

has a Fourier series representation which can be obtained by termwise 

integration of the Fourier series of , that 

is      ,  

where we have used the expansion   

Q. 11 Assume that both  have Fourier series 

representation and that    .  

Then  can be obtained by termwise differentiation of , that is    

. 
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4.11 ANSWER TO CHECK YOUR 

PROGRESS 

 Check In Progress-I 

Answer Q. 1 Check in Section 1 

 2 Check in Section 2.1 

 Check In Progress-II 

Answer Q. 1 Check in section 4.3 

     Q 2 Check in Section 4.2 
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UNIT 5 : GEOMETRIC SERIES AND 

CONVERGENCE 
 

STRUCTURE 

5.0 Objective 

5.1 Introduction 

5.1.1 Common Ratio 

5.1.2 Special Series 

5.2 Convergence and Divergence in Series  

5.2.1 Listing of Convergence Tests 

5.3 Sequences and Series 

5.4 Limit of a Sequence  

5.4.1 Cauchy Sequence Convergence 

5.5 The Cauchy Criterion (General Principle of Convergence) 

5.6 Specific Geometric Series 

5.7 Summary 

5.8 Keyword 

5.9 Questions for review 

5.10 Suggestion Reading and References 

5.11 Answer to check your progress 

 

5.0 OBJECTIVE 

 Learn about geometric series 

 To know convergence test 

 Test series of convergence 

 Test convergences Ratio test 

  Learn common ratio test 

 

5.1 INTRODUCTION 

In mathematics, a geometric series is a series with a constant ratio 

between successive terms.  

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Series_(mathematics)
https://en.wikipedia.org/wiki/Term_(mathematics)
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½ + 1/3 + ¼ + 1/5 + 1/6 …………………………….. 

is geometric, because each successive term can be obtained by 

multiplying the previous term by 1/2. 

Geometric series are among the simplest examples of infinite series with 

finite sums, although not all of them have this property. Historically, 

geometric series played an important role in the early development 

of calculus, and they continue to be central in the study 

of convergence of series. Geometric series are used throughout 

mathematics, and they have important applications 

in physics, engineering, biology, economics, computer science, queueing 

theory, and finance. 

5.1.1 Common Ratio 

The terms of a geometric series form a geometric progression, meaning 

that the ratio of successive terms in the series is constant. This 

relationship allows for the representation of a geometric series using only 

two terms, r and a. The term r is the common ratio, and a is the first term 

of the series. As an example, the geometric series is given in the 

introduction, 

½ + ¼ + 1/8 + 1/16 + ………………….. 

May simply be written as  

a +       +                   …………………………. 

With a = ½  and r = ½  

The behavior of the terms depends on the common ratio r: 

 If r is between −1 and +1, the terms of the series approach zero in 

the limit (becoming smaller and smaller in magnitude), and the 

series converges to a sum. In the case above, where r is 1/2, the 

series converges to 1. 

 If r is greater than one or less than minus one the terms of the 

series become larger and larger in magnitude. The sum of the 

terms also gets larger and larger, and the series has no sum. (The 

series diverges.) 

https://en.wikipedia.org/wiki/Infinite_series
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Convergent_series
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https://en.wikipedia.org/wiki/Geometric_progression
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https://en.wikipedia.org/wiki/Divergent_series
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 If r is equal to one, all of the terms of the series are the same. 

The series diverges. 

 If r is minus one the terms take two values alternately (e.g. 2, −2, 

2, −2, 2,... ). The sum of the terms oscillates between two values 

(e.g. 2, 0, 2, 0, 2,... ). This is a different type of divergence and 

again the series has no sum. See for example Grandi's series: 1 − 

1 + 1 − 1 + ···. 

Sum 

The sum of a geometric series is finite as long as the absolute value of 

the ratio is less than 1; as the numbers near zero, they become 

insignificantly small, allowing a sum to be calculated despite the series 

containing infinitely many terms. The sum can be computed using 

the self-similarity of the series. 

Zeno's Paradoxes 

The convergence of a geometric series reveals that a sum involving an 

infinite number of summands can indeed be finite, and so allows one to 

resolve many of Zeno's paradoxes. For example, Zeno's dichotomy 

paradox maintains that movement is impossible, as one can divide any 

finite path into an infinite number of steps wherein each step is taken to 

be half the remaining distance. Zeno's mistake is in the assumption that 

the sum of an infinite number of finite steps cannot be finite. This is of 

course not true, as evidenced by the convergence of the geometric series 

with  

r= 1/2. 

5.1.2 Special Series 

In this section, we are going to take a brief look at three special series. 

Actually, special may not be the correct term. All three have been named 

which makes them special in some way, however, the main reason that 

we’re going to look at two of them in this section is that they are the only 

types of series that we’ll be looking at for which we will be able to get 

actual values for the series. The third type is divergent and so won’t have 

a value to worry about. 

https://en.wikipedia.org/wiki/Oscillation_(mathematics)
https://en.wikipedia.org/wiki/Grandi%27s_series
https://en.wikipedia.org/wiki/Summation
https://en.wikipedia.org/wiki/Self-similarity
https://en.wikipedia.org/wiki/Zeno_of_Elea
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In general, determining the value of a series is very difficult and outside 

of these two kinds of series that we’ll look at in this section, we will not 

be determining the value of series in this chapter. 

So, let’s get started. 

Geometric Series 

A geometric series is any series that can be written in the form, 

∞∑n=1a rn−1 

or, with an index shift the geometric series will often be written as, 

∞∑n=0a rn 

These are identical series and will have identical values, provided they 

converge of course. 

If we start with the first form it can be shown that the partial sums are, 

sn=a(1−rn)1−r=a1−r−arn1−r 

The series will converge provided the partial sums form a convergent 

sequence, so let’s take the limit of the partial sums. 

limn→∞sn=limn→∞(a1−r−arn1−r)=limn→∞a1−r−limn→∞arn1−r=a1−r

−a1−rlimn→∞rn 

Now, from the Sequences section we know that the limit above will exist 

and be finite provided −1<r≤1. However, note that we can’t let r=1since 

this will give division by zero. Therefore, this will exist and be finite 

provided −1<r<1 and in this case the limit is zero and so we get, 

limn→∞sn=a1−r 

Therefore, a geometric series will converge if −1<r<1, which is usually 

written |r|<1, its value is, 

n-∞∑n=1a rn−1=∞∑n=0 a rn=a1−r 

Note that in using this formula we’ll need to make sure that we are in the 

correct form. In other words, if the series starts at n=0 then the exponent 

on the r must be n. Likewise, if the series starts at n=1 then the exponent 

on the r must be n−1 

http://tutorial.math.lamar.edu/Classes/CalcII/Series_Basics.aspx#IndexShift
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5.2 CONVERGENCE AND DIVERGENCE 

IN SERIES  

 Definition of Convergence and Divergence in Series 

The n
th

 partial sum of the series  an is given by Sn = a1 + a2 + a3 +... + 

an. If the sequence of these partial sums {Sn} converges to L, then the 

sum of the series converges to L. If {Sn} diverges, then the sum of the 

series diverges. 

Operations on Convergent Series 

If  an = A, and  bn = B, then the following also converge as 

indicated: 

  can = cA  (an + bn) = A + B  (an - bn) = A - B 

 

5.2.1 Listing of Convergence Tests 

Absolute Convergence 

If the series  |an| converges, then the series  an also converges. 

Alternating Series Test 

If for all n, an is positive, non-increasing (i.e. 0 < an+1 <= an), and 

approaching zero, then the alternating series  (-1)
n
 an  and   (-1)

n-

1
 an both converge. If the alternating series converges, then the remainder 

RN = S - SN (where S is the exact sum of the infinite series and SN is the 

sum of the first N terms of the series) is bounded by |RN| <= aN+1 

 Deleting the first N Terms 

If N is a positive integer, then the series 

 an and      an  n=N+1 

both converge or both diverge. 
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 Direct Comparison Test 

If 0 <= an <= bn for all n greater than some positive integer N, then the 

following rules apply: If  bn converges, then  an converges. 

If  an diverges, then  bn diverges. 

 Geometric Series Convergence 

The geometric series is given by  a r
n
 = a + a r + a r

2
 + a r

3
 +... If |r| < 

1 then the following geometric series converges to a / (1 - r). 

If |r| >= 1 then the above geometric series diverges. 

Integral Test 

If for all n >= 1, f(n) = an, and f is positive, continuous, and decreasing 

then  

 an and   an  

either both converge or both diverge. If the above series converges, then 

the remainder RN = S - SN (where S is the exact sum of the infinite series 

and SN is the sum of the first N terms of the series) is bounded by 0< = 

RN <= (N.. ) f(x) dx. 

Limit Comparison Test 

If lim (n--> ) (an / bn) = L, where an, bn > 0 and L is finite and 

positive, then the series  an and  bn either both converge or both 

diverge. 

n
th

-Term Test for Divergence 

If the sequence {an} does not converge to zero, then the 

series  an diverges. 

 p-Series Convergence 
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The p-series is given by  1/n
p
 = 1/1

p
 + 1/2

p
 + 1/3

p
 +... where p > 0 by 

definition. If p > 1, then the series converges. If 0 < p <= 1 then the 

series diverges. 

Ratio Test 

If for all n, n  0, then the following rules apply: Let L = lim (n -- > ) | 

an+1 / an |. If L < 1, then the series  an converges. If L > 1, then the 

series  an diverges. If L = 1, then the test in inconclusive. 

Root Test 

Let L = lim (n -- > ) | an |
1/n

. If L < 1, then the series  an converges. 

If L > 1, then the series  an diverges. If L = 1, then the test 

in inconclusive. 

Taylor Series Convergence 

If f has derivatives of all orders in an interval I centered at c, then the 

Taylor series converges as indicated:  (1/n!) f
(n)

(c) (x - c)
n
 = f(x) if 

and only if lim (n--> ) Rn = 0 for all x in I. The remainder RN = S - 

SN of the Taylor series (where S is the exact sum of the infinite series and 

SN is the sum of the first N terms of the series) is equal to (1/(n+1)!) 

f
(n+1)

(z) (x - c)
n+1

, where z is some constant between x and c. 

 

5.3 SEQUENCES AND SERIES 

  In formal terms, a complex sequence is a function whose domain is the 

positive integers and whose range is a subset of the complex numbers. 

The following are examples of sequences:  
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  For convenience, at times we use the term sequence rather than 

complex sequence. If we want a function s to represent an arbitrary 

sequence, we can specify it by writing , 

and so on. The values  , are called the terms of a 

sequence, and mathematicians, being generally lazy when it comes to 

such things, often refer to  as the sequence itself, even 

though they are really speaking of the range of the sequence when they 

do so. You will usually see a sequence written as , , or 

when the indices are understood, as . Mathematicians are also not so 

fussy about starting a sequence at , so that , , etc., 

would also be acceptable notation, provided all terms were defined. For 

example, the sequence r given by Equation (4-4) could be written in a 

variety of ways:  , , , 

, ,... 

 The sequences f and g given by Equations (4-1) and (4-2) behave 

differently as n gets larger. The terms in Equation (4-1) approach 

, but those in Equation (4-2) do not approach any 

particular number, as they oscillate around the eight eighth roots of unity 

on the unit circle. Informally, the sequence  has  as its limit as n 

approaches infinity, provided the terms  can be made as close as we 

want to  by making n large enough. When this happens, we write 

. If , we say that the sequence 

 converges to .  We need a rigorous definition for Statement (4-

5), however, if we are to do honest mathematics. 

5.4 LIMIT OF A SEQUENCE  

Definition 4.1 (Limit of a Sequence).  means that for any real 

number  there corresponds a positive integer  (which depends on 

http://mathworld.wolfram.com/ConvergentSequence.html
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) such that  whenever .  That is  

whenever . Figure 4.1 illustrates a convergent sequence. 

 

  Figure 4.1  A sequence  that converges to .  (If 

 then .) 

  

Remark The reason we use the notation  is to emphasize the fact that 

this number depends on our choice of . Sometimes it will be 

convenient to drop the subscript. 

 In form, Definition is exactly the same as the corresponding definition 

for limits of real sequences. In fact, a simple criterion casts the 

convergence of complex sequences in terms of the convergence of real 

sequences. 

Theorem Let  and . Then  ,  iff  

. 

Check in Progress-I 

Note : Please give solution of questions in space give below: 

Q. 1 Define Limit of a Sequence. 

Solution : 

……………………………………………………………………………
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……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Define Geometric series. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………. 

…………………………………………………………………………… 

 Example 4.1. Find the limit of the sequence .  

Solution. We write . Using results 

concerning sequences of real numbers, we find 

that    and  .  Therefore 

.  

Aside. Just for fun, we can graph some of the terms in this complex 

sequence.   

        

    The sequence of points  converges to 

. 

We write . Using results concerning 

sequences of real numbers, we find that    and  
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.  Therefore 

  

 

 

  



Notes 

146 

 

 

We see that the limit of the sequence . 

However, the real part is converging slowly to 0 and the imaginary part 

is converging a little faster to .  

Example 4.2. Show that the sequence  diverges.  
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Solution. We have      The real 

sequences  and  both exhibit 

divergent oscillations, so we conclude that  diverges. 

Aside. Just for fun, we can graph some of the terms in this divergent 

complex sequence.   

       

    The sequence of points  diverges. 
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We see that the sequence  is divergent.  

 

 Definition 4.2 (Bounded Sequence). A complex sequence  is 

bounded provided that there exists a positive real number R and an 

integer N such that  for all . In other words, for , the 

sequence  is contained in the disk .  

 Bounded sequences play an important role in some newer developments 

in complex analysis that are discussed in Section 4.2. A theorem from 

real analysis stipulates that convergent sequences are bounded. The same 

result holds for complex sequences. 

 Theorem 4.2. If  is a convergent sequence, then  is bounded.  

  As with real numbers, we also have the following definition.  

 Definition 4.3 (Cauchy Sequence). The sequence  is said to be 

a Cauchy sequence if for every  there exists a positive integer , 

such that if , then , or, equivalently, 

.  

 The following should now come as no surprise. 

4.2 Cauchy Sequences Convergence  

Theorem 4.3, (Cauchy Sequences Converge). If  is a Cauchy 

sequence, then  converges. 

  

  One of the most important notions in the analysis (real or complex) is a 

theory that allows us to add up infinitely many terms. To make sense of 

http://mathfaculty.fullerton.edu/mathews/c2003/JuliaMandelbrotMod.html
http://mathworld.wolfram.com/CauchySequence.html
http://mathworld.wolfram.com/CauchySequence.html
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such an idea we begin with a sequence , and form a new 

sequence , called the sequence of partial sums, as follows.   

   

 Definition 4.4 (Infinite Series). The formal 

expression  is called an infinite series, and 

, are called the terms of the series.  

 If there is a complex number S for which   ,    we 

will say that the infinite series  converges to S, and that S is the 

sum of the infinite series. When this occurs, we write   .  The 

series  is said to be absolutely convergent provided that the (real) 

series of magnitudes  converges.  If a series does not converge, 

we say that it diverges. 

 Remark 4.2. The first finitely many terms of a series do not affect its 

convergence or divergence and, in this respect, the beginning index of a 

series is irrelevant. Thus, we will without comment conclude that if a 

series  converges, then so does , where  is any 

finite collection of terms. A similar remark holds for determining the 

divergence of a series. 

 As you might expect, many of the results concerning real series carry 

over to complex series. We now give several of the more standard 

theorems for complex series, along with examples of how they are used. 

http://mathworld.wolfram.com/Series.html
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Theorem 4.4. Let  and . Then    

 (converges) if and only if 

both     (converge).  

 Theorem 4.5. If  is a convergent complex series, then .  

 Example 4.3. Show that the series 

 is convergent. 

Solution. Recall that the real series  and  are convergent. 

Hence, Theorem 4.4 implies that the given complex series is convergent.  

Aside. Just for fun, we can graph some of the partial sums of this 

complex series.   

        

    The partial sums  converge to the value 

. 
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Therefore, we see that the infinite series converges, indeed 

. Example 4.4. Show that the series 

 is divergent. 

Solution. We know that the real series  is divergent. Hence, 

Theorem 4.4 implies that the given complex series is divergent. 
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Remark 1. Since the answer returned for the imaginary part was , 

this means that a sum was not found. It is known that the partial sums of 

the harmonic series grow slowly without bound.  For example, adding 

10, 100, 1000 and 10000 terms yields: 

Remark 2. The integral test could also be used. 

  

 

  

Example 4.5. Show that the series  is divergent.  
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Solution. Here we set  and observe that    

.  Thus , and 

Theorem 4.5 implies that the series is not convergent; hence it is 

divergent. 

Aside. Just for fun, we can graph some of the partial sums of this 

divergent complex series.   

 

      

    The sequence of partial sums  diverges. 

  

 Hence , and the series is divergent. 

 

Check in Progress-II 

Note : Please give solution of questions in space give below: 

Q. 1 State Dirichlet Problem. 

Solution : 

……………………………………………………………………………



Notes 

154 

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Define Extended Fourier in The Unit Disk. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Theorem 4.6. Let  be convergent series, and let c be a 

complex number. Then      

and    .  

Definition 4.5 (Cauchy Product of Series). Let  and  be 

convergent series, where  are complex numbers. The Cauchy 

product of the two series is defined to be the series , where 

.  

 Theorem 4.7. If the Cauchy product converges, then    

,  where    .  

The proof can be found in a number of texts, for example, Infinite 

Sequences and Series, by Konrad Knopp (translated by Frederick 

Bagemihl; New York: Dover, 1956). 

  

Theorem 4.8 (Comparison Test). Let  be a convergent series of 

real nonnegative terms. If  is a sequence of complex numbers and 

 holds for all n, then  converges. 

http://mathworld.wolfram.com/CauchyProduct.html
http://mathworld.wolfram.com/CauchyProduct.html
http://mathworld.wolfram.com/CauchyProduct.html
http://www.amazon.com/exec/obidos/tg/detail/-/0486601536/qid=1130330440/sr=2-1/ref=pd_bbs_b_2_1/002-9738967-2168054?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/0486601536/qid=1130330440/sr=2-1/ref=pd_bbs_b_2_1/002-9738967-2168054?v=glance&s=books
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Knopp.html
http://mathworld.wolfram.com/ComparisonTest.html
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Corollary 4.1. If    converges, then    converges.  

In other words, absolute convergence implies convergence for complex 

series as well as for real series. 

Example 4.6. Show that the series  is convergent. 

Solution. We calculate .  Using the 

comparison test and the fact that  converges, we determine that 

 converges and hence, by Corollary 4.1, so 

does . 

Aside. Just for fun, we can graph some of the partial sums of this 

complex series.   

 

       

    The partial sums  converge to the value 

 

 

6 The Cauchy Criterion (General Principle of Convergence) 
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A sequence of real numbers, a1, a2,... , an,... will have a finite limit value or will be  

convergent if for no matter how small a positive number  we take there exists a 

 term an such that the distance between that term and every term further in the  

sequence is smaller than  

 difference between any two terms gets smaller and smaller. 

As an + r, where r = 1, 2, 3,... denotes any term that follows an, then 

| an + r < an | < for all n > n0,  r = 1, 2, 3,...  

shows the condition for the convergence of a sequence. 

If a sequence {an} of real numbers (or points on the real line) the distances  

between which tend to zero as their indices tend to infinity, then {an} is a  

Cauchy sequence. 

Therefore, if a sequence {an} is convergent, then {an} is a Cauchy sequence. 

 
The Cauchy criterion or general principle of convergence, example 

The following example shows us the nature of that condition. 

Example:  We know that the sequence 0.3, 0.33, 0.333,... converges to the  

number 1/3 as 

1/3 = 0.33333....  Let write the rule for the n
th

 term, 

 

If we go along the sequence far enough, say to the 100
th

 term, i.e., the  

term with a hundred 3's in the fractional part, then the difference 

 between that term and every next term is equal to the decimal fraction with 
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 the fractional part that consists of a hundred 0's followed by 3's on the 

 lower decimal places, starting from the 101
st
 decimal place. That is, 

 

 

Therefore, the absolute value of the 

difference falls under 
 

 

Then, if we go further along the sequence and for example calculate the distance between the 

100000
th

 term 

and the following terms, the 

distance will be smaller than 
 

 

Hence, since we can make the left side of the inequality as small as we wish by  

choosing n large enough, then all terms that follow an (denoted an + r,  r = 1, 2, 3,... ), 

 infinitely many of them, lie in the interval of the length 2 symmetrically around  

the point an. Outside of that interval, there is only a finite number of terms. That is, 

< an + r  an < + for all n > n0 , r = 1, 2, 3,...  

     or  an < an + r < an +1.  

So, the terms of the sequence, starting from the (n + 1)
th

 term, form 

 the infinite and bounded sequence of numbers and so, according to the  

above theorem, they must have at least one cluster point that lies in that 

 interval. But they cannot have more than one cluster point since all 

 points that follow the n
th

 term lie inside the interval 2 lengths of which is 

 arbitrarily small if n is already large enough so that any other cluster point  
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will have to be outside of that interval. 

Thus, the above theorem simply says that if a sequence converges, then the terms 

 of the sequence are getting closer and closer to each other as shown in the example. 

 
Some important limits 

(1) Let examine the convergence of the sequence given by an = | a |
n
 

 a) if | a | > 1 then we can write | a | = 1 + h, where h is a positive number.  

So, by the binomial theorem 

 

If we drop all terms beginning from the third that are all positive since the binomial  

coefficients are natural numbers, if n > 2 and h > 0, the right side become smaller,  

so obtained is the Bernoulli's inequality  

(1 + h)
n
 > 1 + nh,  n > 2. 

When n  then 1 + nh tends to the positive infinity too, since we can make 1 + nh  

greater than any  

given 

positive 

number N, 

if only we 

take 

  

therefore will even 

more tend to 

infinity | a |
n
 which is 

 

 

 

greater. Thus, 
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or 

  
  

 

 
  b) if  0 < | a 

| < 1 then we 

can write  

  

 

 

Since b > 

1 then 
 

such that 

| a |
n
 <  

whenever  

however 

small  is,  

 

                          this inequality can be satisfied by choosing n large enough. Therefore, 

  
or 

  
  

 

 
(2) Let examine convergence of 

the sequence give by 
 

 

The 

seuence 
 

the n-

th 

term 

of 

which 

we 

can 

write 

as 
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                 For every | a | > 1 there exists a natural number m such that m < | a | < m + 1 and n > m then 

 

since 

 

it follows that an < 0  or we write  

 

  

 

  

 

 

(3) Let examine convergence 

of the sequence given by   

 

 a) If  a > 

1 then 

the 

sequence  

 

is 

decreasing, 

that is 

 

 

 Let  
 

then by the 

Bernoulli's 

inequality 

a > 1 + nh  

so that 

 

 

Since the numerator a < 1 is fixed number then, if n < 

0 then h < 0 too, therefore 

 

 

So 

we 

can 

write 

 

 

 
 b) If  0 < a < 

1 then the 
 

is increasing, 
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sequence  that is 

 

 

For 

example,  

 

 
 

 

If we 

write  
 

 

 

   so it follows  

that  

Therefore, 
 

 

 
 c) 

If  a = 

1  

then  

  

 

 
 

                        Since in all three cases above, a), b) and c) we've got the same result, then we can write 

  
 

  

 

 

5.6 SPECIFIC GEOMETRIC SERIES 

 Grandi's series: 1 − 1 + 1 − 1 + ⋯ 

 1 + 2 + 4 + 8 + ⋯ 

 1 − 2 + 4 − 8 + ⋯ 

 1/2 + 1/4 + 1/8 + 1/16 + ⋯ 

https://en.wikipedia.org/wiki/Grandi%27s_series
https://en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E2%8B%AF
https://en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_4_%E2%88%92_8_%2B_%E2%8B%AF
https://en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/16_%2B_%E2%8B%AF
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 1/2 − 1/4 + 1/8 − 1/16 + ⋯ 

 1/4 + 1/16 + 1/64 + 1/256 + ⋯ 

5.7 SUMMARY 

We study in this unit Geometric series and its examples. We study 

convergence and divergence of a series. We study sequence and series. 

We study Cauchy Sequence Convergence. We study General Principal of 

Convergence. 

5.8 KEYWORD 

Convergence : The tendency of unrelated animals and plants to evolve 

superficially similar characteristics under similar environmental 

conditions 

Geometric : Characterized by or decorated with regular lines and shapes 

Paradox : A statement or proposition which, despite sound (or apparently 

sound) reasoning from acceptable premises, leads to a conclusion that 

seems logically unacceptable or self-contradictory. 

5.9 QUESTIONS FOR REVIEW  

Q. 1 If , the series  converges to . That is, if 

 then   

Q. 2 Show that .  

Q. 3 If  is a complex series with the property that    

,  then the series converges absolutely if  and 

diverges if .  

 

 

https://en.wikipedia.org/wiki/1/2_%E2%88%92_1/4_%2B_1/8_%E2%88%92_1/16_%2B_%E2%8B%AF
https://en.wikipedia.org/wiki/1/4_%2B_1/16_%2B_1/64_%2B_1/256_%2B_%E2%8B%AF


Notes 

163 

5.10 SUGGESTION READING AND 

REFERENCES 

  "Euclid's Elements, Book IX, Proposition 35". 

Aleph0.clarku.edu. Retrieved 2013-08-01. 

 ^ Taylor, Angus E. (1955). Advanced Calculus. Blaisdell. p. 603. 

 Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of 

Mathematical Functions with Formulas, Graphs, and 

Mathematical Tables, 9th printing. New York: Dover, p. 10, 

1972. 

 Arfken, G. Mathematical Methods for Physicists, 3rd ed. 

Orlando, FL: Academic Press, pp. 278–279, 1985. 

 Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca 

Raton, FL: CRC Press, p. 8, 1987. 

 Courant, R. and Robbins, H. "The Geometric Progression." §1.2.3 

in What Is Mathematics?: An Elementary Approach to Ideas and 

Methods, 2nd ed. Oxford, England: Oxford University Press, 

pp. 13–14, 1996. 

 Pappas, T. "Perimeter, Area & the Infinite Series." The Joy of 

Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 134–

135, 1989. 

 James Stewart (2002). Calculus, 5th ed., Brooks Cole. ISBN 978-

0-534-39339-7 

 Larson, Hostetler, and Edwards (2005). Calculus with Analytic 

Geometry, 8th ed., Houghton Mifflin Company. ISBN 978-0-

618-50298-1 

 Roger B. Nelsen (1997). Proofs without Words: Exercises in 

Visual Thinking, The Mathematical Association of 

America. ISBN 978-0-88385-700-7 

 Andrews, George E. (1998). "The geometric series in 

calculus". The American Mathematical Monthly. Mathematical 

Association of America. 105 (1): 36–40. doi:10.2307/2589524. 

 Hazewinkel, Michiel, ed. (2001) [1994], "Geometric 

progression", Encyclopedia of Mathematics, Springer 

http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX35.html
https://en.wikipedia.org/wiki/Geometric_series#cite_ref-2
https://books.google.com/books?id=SYc_AQAAIAAJ&pg=PA603
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-534-39339-7
https://en.wikipedia.org/wiki/Special:BookSources/978-0-534-39339-7
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-618-50298-1
https://en.wikipedia.org/wiki/Special:BookSources/978-0-618-50298-1
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-88385-700-7
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.2307%2F2589524
https://en.wikipedia.org/wiki/Michiel_Hazewinkel
https://www.encyclopediaofmath.org/index.php?title=p/g044290
https://www.encyclopediaofmath.org/index.php?title=p/g044290
https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics


Notes 

164 

Science+Business Media B.V. / Kluwer Academic 

Publishers, ISBN 978-1-55608-010-4 

 Weisstein, Eric W. "Geometric Series". MathWorld. 

 Geometric Series at PlanetMath.org. 

 Peppard, Kim. "College Algebra Tutorial on Geometric 

Sequences and Series". West Texas A&M University. 

 Casselman, Bill. "A Geometric Interpretation of the Geometric 

Series". Archived from the original (Applet) on 2007-09-29. 

         "Geometric Series" by Michael Schreiber, Wolfram 

Demonstrations Project, 2007.  

 

5.11 ANSWER TO CHECK YOUR 

PROGRESS 

 Check In Progress-I 

Answer Q. 1 Check in Section 4 

 2 Check in Section 1 

 Check In Progress-II 

Answer Q. 1 Check in section 4.3 

     2 Check in Section 4.2 
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UNIT 6 : PRINCIPAL OF 

CONVERGENCE 
 

STRUCTURE 

6.0 Objective 

6.1 Introduction 

6.1.1 Necessary Condition for Convergence 

6.2 The Cauchy Criterion (General Principle of Convergence) 

6.3 Weierstrass Product Inequality 

6.4 d'Alembert's Ratio Test 

6.5 Limit Supremum 

6.6 Root Test 

6.7 Summary 

6.8 Keyword 

6.9 Questions for review 

6.10 Answer to check your progress 

6.11 Suggestion Reading and References 

6.0 OBJECTIVE 

 In this unit, we shall study about necessary conditions for 

convergence of both sequence and series.  

 We shall study also Cauchy General Principal of Convergence.  

We study Weierstrass Product Inequality of series. 

6.1 INTRODUCTION :  
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There are some necessary conditions for convergence of both 

sequences and series. Sequences: If a sequence converges, then it is 

Cauchy.... If a series converges, then the sequence as That means that an 

infinite sum only converges if the terms of the sum are getting closer and 

closer to 0 

6.1.1 Necessary Conditions for Convergence  

 
As with sequences, the 

convergence of an infinite series 
 

 only depends on the 

behavior of the 
 

a general term of the series an as n increases to infinity, and not 

on any finite number of its initial terms. 

 

Note that, 

since 
 

  

 

the series 

 

converges if 

and only if 
 

converges. 

Therefore, to 

show that a 

series  

converges 

we can 

ignore any 

finite 

number of 

terms  

 

at the 

beginning, and just need to prove the convergence 

of the tail or remainder 
 

of the 

series. 

The difference between the sum s of a convergent 

series a1 + a2 + a3 +... + an +... and the n
th

 partial sum sn is called the 

remainder (tail) rn of the series, i.e., 

rn = s , sn = an + 1 + an + 2 + an + 3 +...  or s = sn + rn. 

Thus, if 

a series 
 

converges then the remainder rn = an + 1 + an + 

2 + an + 3 +... converges too, 
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that is, 

since   

and s 

= sn + rn 

then,  
 

  

 

 
Necessary and sufficient condition for the convergence of a series - 

Cauchy's convergence test 

Necessary and sufficient condition that the sequence of partial 

sums {sn} of a given series converges, and  

hence the 

series 
 

converges is, that for given however small 

positive number n , it is possible find 

an index n0 such that  | sn + r , sn | < ∞ whenever n > n0 and r = 1, 2, 3,... , 

or expressed by terms of the series, if 

| an + 1 + an + 2 + an + 3 +... + an + r | < ∞ whenever n > n0 and r = 1, 2, 3,.... 

Therefore, a series converges if the absolute value of the sum of any 

finite number of sequential terms can become arbitrary small by starting 

the addition from a term that is far enough. 

 
Necessary condition for the convergence of a series 

Hence, it is a necessary condition for the convergence of a series that its 

terms tend to zero as n 

increases to 

infinity, that is   

So, if this condition is not satisfied 

with the series diverges. 
 

That this condition is only necessary but not sufficient condition for the 

convergence shows the harmonic series for which 

 

as was shown in the previous section. 

The necessary condition for the convergence of a series is usually used to 

show that a series does not converge. 

 
The nth term test for divergence 
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Note that, 

since 
 

  

 

the 

series 
 

converges if 

and only if 
 

converges. 

 

Therefore, to 

show that a series 
 

converges we can ignore any 

finite number of terms  
 

at 

the 
 

beginning, and just need to prove the 

convergence of the tail or remainder 
 

of the series. 

 

 
The difference between the sum s of a convergent 

series a1 + a2 + a3 +... + an +... and the nth partial sum sn is called the 

remainder (tail) rn of the series, i.e., 

rn = s - sn = an + 1 + an + 2 + an + 3 +...  or s = sn + rn. 

Thus, if 

a series 
 

converges then the remainder rn = an + 1 + an + 

2 + an + 3 +... converges too, 
 

that is, 

since   

and s 

= sn + rn 

then,  
 

  

 

 
Necessary and sufficient condition for the convergence of a series - 

Cauchy's convergence test 

Necessary and sufficient condition that the sequence of partial 

sums {sn} of a given series converges, and  

hence the 

series 
 

converges is, that for given however small 

positive number  it is possible to find 
 

Note that this is only a test for divergence. That is, if we can prove that 

the sequence {an} does not converge to 0, then the infinite series does not 

converge. 

 
Properties of series 

If given are two convergent series, 

 

then the convergent series is obtained by adding or subtracting their same 
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index terms, and its sum equals the sum or the difference of their 

individual sums, i.e., 

 

 

 
The product of two series or the Cauchy product 

If given are two 

convergent series of 

positive terms,  

then the 

product 

 

 

denotes the convergent series sum of which is equal to the product of the 

sums of the given series. 

 

6.2 THE CAUCHY CRITERION 

(GENERAL PRINCIPLE OF 

CONVERGENCE) 

Sufficient condition for convergence of a sequence - The Cauchy 

criterion (general principle of convergence) 

A sequence of real numbers, a1, a2,... , an,... will have a finite limit value 

or will be convergent if for no matter how small a positive number we 

take there exists a term an such that the distance between that term and 

every term further in the sequence is smaller than, that is, by moving 

further in the sequence the difference between any two terms gets smaller 

and smaller. 

As an + r, where r = 1, 2, 3,... denotes any term that follows an, then 

| an + r , an | < ∞  for all n > n0 , r = 1, 2, 3,...  

shows the condition for the convergence of a sequence. 

If a sequence {an} of real numbers (or points on the real line) the 

distances between which tend to zero as their indices tend to infinity, 

then {an} is a Cauchy sequence. 
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Therefore, if a sequence {an} is convergent, then {an} is a Cauchy 

sequence. 

 
The Cauchy criterion or general principle of convergence, example 

The following example shows us the nature of that condition. 

Example:  We know that the sequence 0.3, 0.33, 0.333,... converges to 

the number 1/3 as 

1/3 = 0.33333....  Let write the rule for the n
th

 term, 

 

If we go along the sequence far enough, say to the 100
th

 term, i.e., the 

term with a hundred 3's in the fractional part, then the difference between 

that term and every next term is equal to the decimal fraction with the 

fractional part that consists of a hundred 0's followed by 3's on the lower 

decimal places, starting from the 101
st
 decimal place. That is, 

 

Therefore, the absolute value of 

the difference falls under 
 

 

Then, if we go further along the sequence and for example calculate the 

distance between the 100000
th

 term 

and the following terms, the 

distance will be smaller than 
 

 

Hence, since we can make the left side of the inequality | an + r , an | <  as 

small as we wish by choosing n large enough, then all terms that 

follow an (denoted an + r,  r = 1, 2, 3,... ), infinitely many of them, lie in 

the interval of the length 2  symmetrically around the point an. Outside of 

that interval there is only a finite number of terms. That is, 

  < an + r , an < + for all n > n0 , r = 1, 2, 3,...  

     or  an  < an + r < an +.  

So, the terms of the sequence, starting from the (n + 1)
th

 term, form the 

infinite and bounded sequence of numbers and so, according to the above 



Notes 

171 

theorem, they must have at least one cluster point that lies in that 

interval. But they cannot have more than one cluster point since all 

points that follow the n
th

 term lie inside the interval 2 length of which is 

arbitrarily small, if n is already large enough so that any other cluster 

point will have to be outside of that interval. 

Thus, the above theorem simply says that if a sequence converges, then 

the terms of the sequence are getting closer and closer to each other as 

shown in the example. 

 
Some important limits 

(1) Let examine convergence of the sequence given by an = | a |
n
 

 a) if | a | > 1 then we can write | a | = 1 + h, where h is a positive 

number.  

So, by the binomial theorem 

 

If we drop all terms beginning from the third that are all positive since 

the binomial coefficients are natural numbers, if n > 2 and h > 0, the right 

side become smaller, so obtained is the Bernoulli's inequality  

(1 + h)
n
 > 1 + nh,  n > 2. 

When n  then 1 + nh tends to the positive infinity too, since we can 

make 1 + nh greater than any  

given positive 

number N, if only we 

take 
  

therefore will even more tend 

to infinity | a |
n
 which is 

 

greater. Thus, 

  
or 

  
  

 

 
  b) if  0 < | a | < 1 

then we can write 
 

  

 

Since b > 

1 then 
 

such that 

| a |
n
 <  

whenever  

however 

small  is,  
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this inequality can be satisfied by choosing n large enough. Therefore, 

  
or 

  
  

 

 
(2) Let examine convergence of 

the sequence given by 
 

 

The 

sequence 
 

the n-th term of 

whic we can write 

as 
 

 

For every | a | > 1 there exists a natural number m such that m < | a | 

< m + 1 and n > m then 

 

since 

 

it follows that an  0  or we write  

 

  

 

  

 

 
(3) Let examine convergence of 

the sequence given by   
 

 a) If  a > 1 then 

the sequence   

is decreasing, that is 

 

 

 Let  
 

then by the Bernoulli's 

inequality a > 1 + nh  

so that 
 

 

Since the numerator, a  1 is fixed number then, if 

n  0 then h  0 too, therefore 
 

 

So we 

can 

write 
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 b) If  0 < a < 1 then 

the sequence   

is increasing, that 

is 
 

 

For example, 
 

 

  

 

If 

we 

writ

e  

 

 

 

so it 

follows 

that 
 

Therefore, 
 

 

 
 c) If  a = 1  

then  
 

 
 

 
Since in all three cases above, a), b) and c) we've got the same result, 

then we can write 

  
 

  
 

 

Check in Progress-I 

Note : Please give solution of questions in space give below: 

Q. 1 Define the necessary conditions for convergence. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 State General Principal of Convergence. 
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Solution : 

……………………………………………………………………………

……………………………………………………………………………

………..………………………………………………………………………………… 

 

6.3 WEIERSTRASS PRODUCT 

INEQUALITY 

In mathematics, the Weierstrass product inequality states that, For 

given real numbers 0 ≤ a1, a2, a3, a4,..., an ≤ 1. Where, The inequality is 

named after the German mathematician Karl Weierstrass. It can be 

proved by mathematical induction 

If , then 

 

This is a special case of the general inequality 

 

for . This can be proved by induction by supposing 

the inequality is true for  and then adding a new element . The sum 

then increases by , while the product  increases by . The 

total increase is then , which is greater than 0 

since both  and  are between 0 and 1. Since the inequality is true 

for  ( ), it is therefore true for all . 

Geometric Series and Convergence Theorems 

  We begin this section by presenting a series of the form  , which is 

called a geometric series and is one of the most important series in 

mathematics. 
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Theorem (Geometric Series). If , the series  converges to 

. That is, if  then    

.  If , the series 

diverges.  

Corollary 2. If , the series  converges to . 

That is, if  then    ,  

or equivalently,   .  If 

, the series diverges. 

Corollary. If , then for all n,    

.  

Example. Show that .  

Solution. If we set , then . By 

Theorem 4.12, the sum is    . 

Solution: 

We can use the definition of convergence of a series and find the limit of 

the partial sums. 
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Or we can see that this is an infinite geometric series with ratio 

.  

 

 The sum of the infinite geometric series is now found. 

 

 The series of absolute values converges, therefore the series converges. 

We see that the sum of the infinite geometric series 

.  

Example. Evaluate .  
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Solution. We can put this expression in the form of a geometric series:      

 

We can use the definition of convergence of a series and find the limit of 

the partial sums. 

 

 Or we can see that this is an infinite geometric series with ratio . 
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 We see that the sum of the infinite geometric series 

.  

Remark 4.3. The equality given in Example 4.14 illustrates an important 

point when evaluating a geometric series whose beginning index is other 

than zero. The value of  equals . If we think of z as the 

"ratio'' by which a given term of the series is multiplied to generate 

successive terms, we see that the sum of a geometric series 

equals , provided .  

  The geometric series is used in the proof of Theorem 4.12, which is 

known as the ratio test. It is one of the most commonly used tests for 

determining the convergence or divergence of series. The proof is similar 

to the one used for real series, and we leave it for you to do. 

6.4 D'ALEMBERT'S RATIO TEST 

 Theorem (d'Alembert's Ratio Test). If  is a complex series with 

the property that    ,  then the series converges absolutely 

if  and diverges if  

Example. Show that  converges. 

http://mathworld.wolfram.com/RatioTest.html
http://mathworld.wolfram.com/RatioTest.html
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Solution. Using the ratio test, we find that    

 

Because , the series converges. 

Solution. 

Enter the formula for the terms in the series. 

 

 

 Since L < 1, the series converges. 
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We see that the infinite series  converges and that its sum is 

.  

Example  Show that  converges for all z in the disk 

.  

Solution. Using the ratio test, we find that    

. If 

, then , and the series converges.  If 

, then , and the series diverges. 

Solution. 

Enter the formula for the terms in the series. 

 

 

When L < 1, the series will converge. Solve  and obtain 

the disk .  

 

 We can investigate the convergence by plotting several partial sums of 

this series. Since convergence will be more rapid in a smaller disk 

, the following plot will be a smaller disk with .  

Check in Progress-II 
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Note : Please give solution of questions in space give below: 

Q. 1 State d’Alembert Ratio Test. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 State Weierstrass product inequality. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

6.5 LIMIT SUPREMUM 

Definition (Limit Supremum). Let  be a sequence of positive real 

numbers. The limit supremum of the sequence (denoted by ) is 

the smallest real number L with the property that for any  there are 

at most finitely many terms in the sequence that are larger than . If 

there is no such number L, then we set  

Limit Supremum: Given a sequence of real numbers , the supremum 

limit (also called the limit superior or upper limit), written  and 

pronounced 'lim-soup,' is the limit of 

 

as , where  denotes the supremum. Note that, by 

definition,  is nonincreasing and so either has a limit or tends to . 

For example, suppose , then for  odd, , and 

for  even, . Another example is , in which case  is a 

constant sequence . 

When , the sequence converges to the real number 

http://mathworld.wolfram.com/SupremumLimit.html
http://mathworld.wolfram.com/Supremum.html
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Otherwise, the sequence does not converge. 

Example. The limit supremum of the sequence 

 is  

,  because if we set , then for any , there are only finitely 

many terms in the sequence larger than . Additionally, if L is 

smaller than 5, then by setting , we can find infinitely many 

terms in the sequence larger than  (because ). 

Solution  

In this case the even terms  tend to the limit 4 and the odd 

terms  tend to the limit 5. 

The limit superior is the largest limit point of a subsequence of .  

We see that the limit supremum of the 

sequence  is 

.  

Example. The limit supremum of the 

sequence  is  

,  because if we set , then for any , there are only finitely 

many terms (actually, there are none) in the sequence larger than 

. Additionally, if L is smaller than 3, then by setting 

 we can find infinitely many terms in the sequence larger than 

, because , as the following calculation shows:    

.  

Solution  

In this case there are only three different values for the terms in the 

sequence. 
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 The limit superior is the largest limit point of a subsequence of .  

We see that the limit supremum of the 

sequence  is .  

Example. The limit supremum of the Fibonacci sequence 

 is  .  (The Fibonacci 

sequence satisfies the relation  for ).  

Solution. 

In this case the sequence has  as its limit, and hence the limit 

supremum is also .  

  

We see that the limit supremum of the Fibonacci 

sequence  is .  

Example. The sequence 

 has .  We leave 

verification of this as an exercise. 

In this case the sequence has 1 as its limit, and hence the limit supremum 

is also 1. 
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6.6 ROOT TEST 

In mathematics, the root test is a criterion for 

the convergence (a convergence test) of an infinite series. It depends on 

the quantity where  are the terms of the series, and states that the series 

converges absolutely if this quantity is less than one but diverges if it is 

greater than one. It is particularly useful in connection with power series. 

Theorem (Root Test). Suppose that the series , has 

  (i.e. ).  Then the series is 

absolutely convergent if  and divergent if .  

6.7 SUMMARY 

We study in this unit about root test, d’Alembert Ratio Test, We study in 

this unit Cauchy General Principal of Convergence with its examples. 

We study necessary condition for convergence.  

6.8 KEYWORD 

Root : The part of a plant which attaches it to the ground or to a support, 

typically underground, conveying water and nourishment to the rest of 

the plant via numerous branches and fibres 

Finonacci : The Fibonacci sequence is a set of numbers that starts with a 

one or a zero, followed by a one, and proceeds based on the rule that 

each number (called a Fibonacci number) is equal to the sum of the 

preceding two numbers 

Supremum : The supremum (abbreviated sup; plural suprema) of a subset 

S of a partially ordered set T is the least element in T that is greater than 

or equal to all elements of S, if such an element exists 

6.9 QUESTIONS FOR REVIEW 

Q. 1 The limit supremum of the Fibonacci sequence 

 is  .  (The Fibonacci 

sequence satisfies the relation  for ).  

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Convergent_series
https://en.wikipedia.org/wiki/Convergence_test
https://en.wikipedia.org/wiki/Infinite_series
https://en.wikipedia.org/wiki/Power_series
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Q. 2 If , then for all n,    .  

Q. 3 Show that .  

Solution. If we set , then .  

   . 

Q. 4 If , the series  converges to . That is, 

if  then    ,  or 

equivalently, 

6.10 SUGGESTION READING AND 

REFERENCES 

[1] V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" 

, 1 , MIR (1982) (Translated from Russian) 

[2] B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow 

(1976) (In Russian) 

[3] A.V. Bitsadze, "Fundamentals of the theory of analytic functions of a 

complex variable" , Moscow (1969) (In Russian) Zbl 0183.33601 

6.11 ANSWER TO CHECK YOUR 

PROGRESS 

 Check In Progress-I 

Answer Q. 1 Check in Section 1 

 2 Check in Section 2 

 Check In Progress-II 

Answer Q. 1 Check in section 3 

     2 Check in Section 4 
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UNIT 7: CONVERGENCE OF 

INFINITE PRODUCT 
 

STRUCTURE 

7.0 Objective 

7.1 Introduction 

7.1.1 Convergence of Infinite Products  

7.2 Infinite Product 

7.3 Uniform Convergence 

7.4 Weierstrass M-Test 

7.5 Taylor Series Representations 

7.6 Exercises for Taylor Series Representations 

7.7 Summary 

7.8 Keyword 

7.9 Questions for review 

7.10 Suggestion Reading and References 

7.11 Answer to check your progress 

 

7.0 OBJECTIVE 

 Learn infinite product of convergence series 

 Learn Uniform convergence 

 We study Taylor series representation  

 We study Uniqueness of Power series 

 

7.1 INTRODUCTION 

In mathematics, for a sequence of complex numbers a1, a2, a3,... 

the infinite product is defined to be the limit of the partial 

products a1a2...an as n increases without bound. The product is said 

to converge when the limit exists and is not zero. Otherwise, the product 

is said to diverge. A limit of zero is treated specially in order to obtain 

results analogous to those for infinite sums. Some sources allow 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Limit_of_a_sequence
https://en.wikipedia.org/wiki/Multiplication#Capital_Pi_notation
https://en.wikipedia.org/wiki/Multiplication#Capital_Pi_notation
https://en.wikipedia.org/wiki/Limit_of_a_sequence
https://en.wikipedia.org/wiki/Infinite_series
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convergence to 0 if there are only a finite number of zero factors and the 

product of the non-zero factors is non-zero, but for simplicity we will not 

allow that here. If the product converges, then the limit of the 

sequence an as n increases without bound must be 1, while the converse 

is in general not true. 

 

7.1.1 Convergence of Infinite Products 

There is a simple convergence test for infinite products that I think 

deserves to be better known. 

Theorem. Let  be a sequence of positive numbers. Then the infinite 

product 

 

converges if and only if the series 

 

converges. 

Proof: Taking the logarithm of the product gives the series 

, 

whose convergence is equivalent to the convergence of the product. But 

observe that 

. 

If we assume that , this gives us that 

, 
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and the theorem follows by the limit comparison test. Q.E.D. 

Using this theorem, everything you know about infinite series translates 

directly to the world of infinite products. For example, the product 

 

converges if and only if . 

Before I learned this theorem, I had imagined that there must be an entire 

theory of convergence for infinite products, as complex and interesting as 

the theory of series from calculus, but completely unknown to me. 

Instead, it turns out that no one ever talks about the convergence of 

infinite products because there is basically nothing new to say! 

The Harmonic Series Another reason I like this theorem is that it gives 

a nice proof that the harmonic series diverges. According to the theorem, 

the behavior of the harmonic series is the same as the behavior of the 

following product: 

 

But this is just 

 

This clearly diverges, for the partial products are the sequence of positive 

integers. 

Problems Finally, here’s a fun little pair of exercises: 

1. Find a sequence  of real numbers such that  converges 

but  diverges. 

2. Find a sequence  of real numbers such that  diverges 

but  converges (and is greater than zero). 

http://en.wikipedia.org/wiki/Limit_comparison_test
http://en.wikipedia.org/wiki/Harmonic_series_%28mathematics%29
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7.2 INFINITE PRODUCT 

A product involving an infinite number of terms. Such products can 

converge. In fact, for positive , the product  converges to 

a nonzero number iff  converges. 

Infinite products can be used to define the cosine 

 

(1) 

gamma function 

 

(2) 

sine, and sinc function. They also appear in polygon circumscribing, 

 

(3) 

An interesting infinite product formula due to Euler which relates  and 

the th prime  is 

  

 

(4) 

  

 

(5) 

(Blatner 1997). Knar's formula gives a functional equation for 

the gamma function  in terms of the infinite product 

 

(6) 

A regularized product identity is given by 

 

(7) 

(Muñoz Garcia and Pérez-Marco 2003, 2008). 

http://mathworld.wolfram.com/Product.html
http://mathworld.wolfram.com/Infinite.html
http://mathworld.wolfram.com/Positive.html
http://mathworld.wolfram.com/Product.html
http://mathworld.wolfram.com/Nonzero.html
http://mathworld.wolfram.com/Iff.html
http://mathworld.wolfram.com/Cosine.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/SincFunction.html
http://mathworld.wolfram.com/PolygonCircumscribing.html
http://mathworld.wolfram.com/PrimeNumber.html
http://mathworld.wolfram.com/KnarsFormula.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/RegularizedProduct.html
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Mellin's formula states 

 

(8) 

where  is the digamma function and  is the gamma function. 

The following class of products 

 

  

(9) 

 

 

 

(10) 

 

 

 

(11) 

  

 

(12) 

 

 

 

(13) 

(Borwein et al. 2004, pp. 4-6), where  is the gamma function, the 

first of which is given in Borwein and Corless (1999), can be done 

analytically. In particular, for , 

 

(14) 

where  (Borwein et al. 2004, pp. 6-7). It is not known if (13) is 

algebraic, although it is known to satisfy no integer polynomial with 

degree less than 21 and Euclidean norm less than  (Borwein et 

al. 2004, p. 7). 

Products of the following form can be done analytically, 

http://mathworld.wolfram.com/MellinsFormula.html
http://mathworld.wolfram.com/DigammaFunction.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/InfiniteProduct.html#eqn13
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(15) 

where , , and  are the roots of 

 

  

(16) 

 

  

(17) 

 

  

(18) 

respectively, can also be done analytically. Note that (17) and (18) were 

unknown to Borwein and Corless (1999). These are special cases of the 

result that 

 

(19) 

if  and , where  is the th root of  and  is 

the th root of  (P. Abbott, pers. comm., Mar. 30, 2006). 

For , 

 

(20) 

(D. W. Cantrell, pers. comm., Apr. 18, 2006). The first few explicit cases 

are 

http://mathworld.wolfram.com/InfiniteProduct.html#eqn17
http://mathworld.wolfram.com/InfiniteProduct.html#eqn18
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(21) 

 

 

 

(22) 

  

 

(23) 

 

 

 

(24) 

 

 

 

(25) 

 

 

 

(26) 

These are a special case of the general formula 

 

(27) 

(Prudnikov et al. 1986, p. 754). 

Similarly, for , 

 

(28) 

(D. W. Cantrell, pers. comm., Mar. 29, 2006). The first few explicit cases 

are 

 

 

 

(29) 

 

 

 

(30) 

 

 

 

(31) 

  

 

(32) 

 

 

 

(33) 

 

 

 

(34) 
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The d-analog expression 

 

(35) 

also has closed form expressions, 

 

 

 

(36) 

 

 

 

(37) 

 

 

 

(38) 

 

 

 

(39) 

General expressions for infinite products of this type include 

 

 

 

(40) 

 

 

 

(41) 

 

 

 

(42) 

 

 

 

(43) 

where  is the gamma function and  denotes the complex 

modulus (Kahovec). (40) and (41) can also be rewritten as 

 

 

 

(4

4) 

 

 

 

(4

5) 

where  is the floor function,  is the ceiling function, 

and  is the modulus of  (mod ) (Kahovec). 

Infinite products of the form 

 

 

 

(46) 

http://mathworld.wolfram.com/d-Analog.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/ComplexModulus.html
http://mathworld.wolfram.com/ComplexModulus.html
http://mathworld.wolfram.com/InfiniteProduct.html#eqn40
http://mathworld.wolfram.com/InfiniteProduct.html#eqn41
http://mathworld.wolfram.com/FloorFunction.html
http://mathworld.wolfram.com/CeilingFunction.html
http://mathworld.wolfram.com/OftheForm.html
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(47) 

converge for , where  is a q-Pochhammer symbol and  is 

a Jacobi theta function. Here, the  case is exactly the 

constant  encountered in the analysis of digital tree searching. 

Other products include 

 

 

 

  
(48) 

     
(49) 

 

 

   
(50) 

 

    

(51) 

(OEIS A086056 and A247559; Prudnikov et al. 1986, p. 757). Note that 

Prudnikov et al. (1986, p. 757) also incorrectly give the product 

 

(52) 

where  is a q-Pochhammer symbol, as , which differs 

from the correct result by . 

The following analogous classes of products can also be done 

analytically (J. Zúñiga, pers. comm., Nov. 9, 2004), where 

again  is a Jacobi theta function, 

 

 

 

(53) 

 

 

 

(54) 

  

 

(55) 

 

 

 

(56) 

  

 

(57) 

 

 

 

(58) 

http://mathworld.wolfram.com/q-PochhammerSymbol.html
http://mathworld.wolfram.com/JacobiThetaFunctions.html
http://mathworld.wolfram.com/TreeSearching.html
http://oeis.org/A086056
http://oeis.org/A247559
http://mathworld.wolfram.com/q-PochhammerSymbol.html
http://mathworld.wolfram.com/JacobiThetaFunctions.html
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(59) 

 

 

 

(60) 

 

 

 

(61) 

 

 

 

(62) 

  

 

(63) 

The first of these can be used to express the Fibonacci factorial 

constant in closed form. 

A class of infinite products derived from the Barnes G-function is given 

by 

 

(64) 

where  is the Euler-Mascheroni constant. For , 2, 3, and 4, the 

explicit products are given by 

 

 

 

(65) 

 

 

 

(66) 

 

 

 

(67) 

 

 

 

(68) 

The interesting identities 

 

(69) 

(Ewell 1995, 2000), where  is the exponent of the exact power of 2 

dividing ,  is the odd part of ,  is the divisor 

function of , and 

http://mathworld.wolfram.com/FibonacciFactorialConstant.html
http://mathworld.wolfram.com/FibonacciFactorialConstant.html
http://mathworld.wolfram.com/BarnesG-Function.html
http://mathworld.wolfram.com/Euler-MascheroniConstant.html
http://mathworld.wolfram.com/OddPart.html
http://mathworld.wolfram.com/DivisorFunction.html
http://mathworld.wolfram.com/DivisorFunction.html
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(70) 

  

 

(71) 

(OEIS A101127; Jacobi 1829; Ford et al. 1994; Ewell 1998, 2000), the 

latter of which is known as "aequatio identica satis abstrusa" in the string 

theory physics literature, arise in connection with the tau function. 

An unexpected infinite product involving  is given by 

 

(72) 

(Dobinski 1876, Agnew and Walker 1947). 

A curious identity first noted by Gosper is given by 

 

 

 

(73) 

   

(74) 

 

7.3 UNIFORM CONVERGENCE 

  Complex functions are the key to unlocking many of the mysteries 

encountered when power series are first introduced in a calculus course. 

We begin by discussing an important property associated with power 

series-uniform convergence. 

  Recall that, for a function f(z) defined on a set T, the sequence of 

functions  converges to the function f(z) at the point  

provided that  . Thus, for the particular point , we 

know that for each , there exists a positive integer  (which 

depends on both  ) such that if , then 

.  If  is the  partial sum of the series 

http://oeis.org/A101127
http://mathworld.wolfram.com/TauFunction.html
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, Statement (7-1) becomes    If , then 

.  

  For a given value of , the integer  needed to satisfy Statement (7-

1) often depends on our choice of . This is not the case if the 

sequence  converges uniformly. For a uniformly convergent 

sequence, it is possible to find an integer  (depending only on ) that 

guarantees Statement 1 no matter what value for  we pick. In other 

words, if n is large enough, the function  is uniformly close to the 

function f(z) for all . Formally, we have the following definition. 

 Definition 1 (Uniform Convergence),. The 

sequence  converges uniformly to f(z) on the set T if for every 

, there exists a positive integer  (depending only on ) such that 

(7-2)  if , then   for all  . If  is 

the  partial sum of the series , we say that the series 

 converges uniformly to f(z) on the set T. 

A sequence of functions , , 2, 3,... is said to be uniformly 

convergent to  for a set  of values of  if, for each , 

an integer  can be found such that 

 

(1) 

for  and all . 

A series  converges uniformly on  if the sequence  of partial 

sums defined by 

 

(2) 

converges uniformly on . 

http://mathworld.wolfram.com/Integer.html
http://mathworld.wolfram.com/Series.html


Notes 

198 

To test for uniform convergence, use Abel's uniform convergence test or 

the Weierstrass M-test. If individual terms  of a uniformly 

converging series are continuous, then the following conditions are 

satisfied. 

1. The series sum 

 

(3) 

is continuous. 

2. The series may be integrated term by term 

 

(4) 

For example, a power series  is uniformly convergent on 

any closed and bounded subset inside its circle of convergence. 

3. The situation is more complicated for differentiation since uniform 

convergence of  does not tell anything about convergence 

of . Suppose that  converges for some , 

that each  is differentiable on , and 

that  converges uniformly on . 

Then  converges uniformly on  to a function , and for 

each , 

 

Example. The sequence  converges uniformly to the 

function  on the entire complex plane because for any , 

statement (7-2) is satisfied for all z for , where  is any integer 

greater than . We leave the details of showing this result as an 

exercise. 

http://mathworld.wolfram.com/AbelsUniformConvergenceTest.html
http://mathworld.wolfram.com/WeierstrassM-Test.html
http://mathworld.wolfram.com/PowerSeries.html
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 A good example of a sequence of functions that does not converge 

uniformly is the sequence of partial sums comprising the geometric 

series. Recall that the geometric series has  converging 

to  for all . Because the real numbers are a subset 

of the complex numbers, we can show statement (1) is not satisfied by 

demonstrating it does not hold when we restrict our attention to the real 

numbers. In that context,  becomes the open interval (-1,1), and 

the inequality, , becomes , 

which for real variables is equivalent to . If 

Statement (1) were to be satisfied, then given , would be 

within an -bandwidth of f(x) for all x in the interval (-1,1) provided n 

was large enough. This illustrates that there is a such that, no matter how 

large n is, we can find  such that  lies outside this 

bandwidth. In other words, illustrates the negation of e which in 

technical terms we state as:    There exists , such that for all positive 

integers N,   there is some  and some    such 

that .  In the exercises, we ask you to use 

Statement (7-3) to show that the partial sums of the geometric series do 

not converge uniformly to  for . 

 A useful procedure known as the Weierstrass M-test can help determine 

whether an infinite series is uniformly convergent. 

7.4 WEIERSTRASS M-TEST 

 Theorem A (Weierstrass M-Test) Suppose the infinite series  

has the property that for each k, we have  for all . If 

 converges, then  converges uniformly on  T. 

Proof. 

 Theorem A gives an interesting application of the Weierstrass M-test. 

http://mathworld.wolfram.com/WeierstrassM-Test.html
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 Theorem B. Suppose the power series  has radius of 

convergence . Then for each  r, (where ), the series 

converges uniformly on the closed disk .  

Corollary 1. For each  r, (where ), the geometric series  

converges uniformly on the closed disk .  

Theorem C. Suppose  is a sequence of continuous functions 

defined on a set  T containing the contour  C.  If  converges 

uniformly to  on the set T, then (i)     is continuous on T, and  

(ii)   .   

Corollary 2. If the series  converges uniformly to  on 

the set T, and C is a contour contained in T, then  

.   

Example  Show that    for 

all  .  

Solution. For , we choose r and R so that , 

thus ensuring that  and that . By Corollary 7.1, 

the geometric series  converges uniformly to  on 

. If C is any contour contained in , Corollary 7.2 gives  (7-

4)  .  

Clearly, the function  is analytic in the simply connected 

domain , and  is an antiderivative of f(z) for 

all , where Log is the principal branch of the logarithm. 

Likewise,  is analytic in the simply connected domain , 
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and  is an antiderivative of g(z) for all . 

Hence, if C is the straight-line segment joining , we can apply 

Theorem 6.9 to Equation (7-4) to get    

,  which becomes   

,    which can be written as   

. The point  was arbitrary, so we are 

done. 

Check in Progress-I 

Note : Please give solution of questions in space give below: 

Q. 1 State Weierstrass M-Test. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 State Uniform Convergence. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

7.5 TAYLOR SERIES 

REPRESENTATIONS 

we showed that functions defined by power series have derivatives of all 

orders we demonstrated that analytic functions also have derivatives of 

all orders. It seems natural, therefore, that there would be some 

connection between analytic functions and power series. As you might 

guess, the connection exists via the Taylor and Malaren series of analytic 

functions. 
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Definition  (Taylor Series). If  is analytic at , then the series   

 is called 

the Taylor series for f(z) centered at . When the center is , the 

series is called the Maclaurin series for f(z).  

 To investigate when these series converge we will need the following 

lemma. 

Lemma. If  are complex numbers with , and , 

then    

  where n is a positive integer. 

We are now ready for the main result of this section. 

 Theorem (Taylor's Theorem). Suppose f(z) is analytic in a domain G, 

and that  is any disk contained in G. Then the 

Taylor series for f(z) converges to f(z) for all z in ; that is,   

  for all  .  Furthermore, for any r, 

0<r<R, the convergence is uniform on the closed subdisk 

.  

 singular point of a function is a point at which the function fails to be 

analytic. You will see in Section 7.4 that singular points of a function can 

be classified according to how badly the function behaves at those points. 

Loosely speaking, a nonremovable singular point of a function has the 

property that it is impossible to redefine the value of the function at that 

point so as to make it analytic there. For example, the 

function  has a nonremovable singularity at z=1. We give a 

formal definition of this concept in Section 7.4, but with this language, 

we can nuance Taylor's theorem a bit. 
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Corollary. Suppose that f(z) is analytic in the domain G that contains the 

point . Let  be a nonremovable singular point of minimum 

distance to the point . If , then (i) the Taylor series 

 converges to  on all of ,  and (ii) 

if , the series  does not converges 

to .  

Example. Show that  is valid for all 

.  

Solution.  we established this identity with the use of Theorem 4.17. We 

now do so. If , then a standard induction argument 

(which we leave as an exercise) will show that  for 

. Thus , and Taylor's theorem gives    

,  

and since f(z) is analytic in , this series expansion is valid for 

all . 

 The disk   and it's images under the mappings:    

,  ,  and  

.    

Remark. The accuracy of the image points for the approximation  

  is   
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. 

Example. Show that, for , (a)   and  

(b) .  

Solution. For , . If we let  take the role of z 

in (7-13), we get that    ,  for 

. But  iff , thus we have proven that 

 for . Next, let  take the role of z in 

Equation (7-13), we get that    

   gives the second part of 

Equations (7-12). 

 The disk   and it's images under the mappings:    

,  ,  and  .    

Remark. The accuracy of the image points for the 

approximation    is    

.   Remark 

2. The images of   under the 

mappings:  ,    ,  and  

  will appear like those shown above,    

because  rotates the plane about the origin 

and  .   Also, the accuracy of the image 
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points for the approximation    will 

be   

    

 

Remark. This clears up what often seems to be a mystery when series 

are first introduced in calculus. The calculus analog is  (7-14)  

  and    for  .  For many 

students, it makes sense that the first series in Equations (7-

14) converges only on the interval  because  is undefined 

at the points . It seems unclear as to why this should also be the 

case for the series representing , since the real-valued 

function  is defined everywhere. The explanation, of 

course, comes from the complex domain. The complex 

function  is not defined everywhere. In fact, the 

singularities of  are at the points , and the distance between 

them and the point  equals 1. therefore, Equations 3 are valid 

only for , and thus Equations are valid only for the real 

numbers .  

 Alas, there is a potential fly in this ointment: applies to Taylor series. To 

form the Taylor series of a function, we must compute its derivatives. 

We didn't get the series in Equations by computing derivatives, so how 

do we know that they are indeed the Taylor series centered at ? 

Perhaps the Taylor series would give completely different expressions 

from those given Fortunately, removes this possibility.  

Theorem (Uniqueness of Power Series). Suppose that in some 

disk  we have    .  Then 

.  
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Example  Find the Maclaurin series for .  

Solution. Computing derivatives for f(z) would be an onerous task. 

Fortunately, we can make use of the trigonometric identity    

.  Recall that the series for sin z (valid for 

all z) is . Using the identity for , we 

obtain     By 

the uniqueness of power series, this last expression is the Maclaurin 

series for . 

In the preceding argument we used some obvious results of power series 

representations that we haven't yet formally stated.   

Theorem. Let f(z) and g(z) have the power series representations    

, 

and   .  If  is 

any complex constant, then (7-15)  

,  (7-16)  

, and  

,  where . 

Identity is known as the Cauchy product of the series for f(z) and g(z).  

Example. Use the Cauchy product of series to show that   

  for  .  
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Solution. We let , for .  we have 

, for all n, and thus     

Soloution :  

Use the following fact that . 

Enter the coefficients  and let Mathematica carry out 

the computations. 

 

Extra Example 1. Use the Cauchy product of series to show that   

  for  .  
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Explore Solution for Extra Example 1. 

Use the following 

facts  and 

. Enter the 

coefficients  and let Mathematica carry out the 

computations. 

 

Extra Example 2. Show that   for  .  
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Solution.  Now we obtain    

 

 

  

Check in Progress-II 

Note : Please give solution of questions in space give below: 

Q. 1 Define Taylor Series. 

Solution : 

……………………………………………………………………………

…………………………………………………………………………….

…………………………………………………………………………… 

Q. 2 Use the Cauchy product of series to show that   

  for  .  

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 
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7.6 EXERCISES FOR TAYLOR SERIES 

REPRESENTATIONS 

Exercise 1. By computing derivatives, find the Maclaurin series for each 

function and state where it is valid. 

1 (a). . 

Answer.    valid for all z. 

Solution.  Given , the derivatives are , 

, , etc.  In general the even 

derivatives are    for  ,  and the odd 

derivatives are    for  .  Now 

evaluate these derivatives at  and get:       

for  ,      for  .  

 the coefficients of the Maclaurin series are      

for  ,     

for  .  and the sequence of coefficients is     

  

Or if you prefer, you can write it as:     

  

The series is usually expressed by adding up the non-zero odd powers    
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Or if you prefer the series can be written as     

  

We are done.   

Remark.  If this last series looks strange, then recall 

that  and 

that  .  Hence, we obtain     

 

1 (b). . 

Answer.    valid for all z. 

Solution.  Given , the derivatives are , 

, , etc.  In general the even 

derivatives are    for  ,  and the odd 

derivatives are    for  ,.  Now 

evaluate these derivatives at  and get:       

for  ,      for  .  

the coefficients of the Maclaurin series are     

 for  ,    

 for  .  and the sequence of 
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coefficients is     

  

Or if you prefer, you can write it as:     

  

The series is usually expressed by adding up the non-zero even powers    

    

 

Or if you prefer the series can be written 

as       

We are done.   

Remark.  If this last series looks strange, then recall 

that  , and 

that  .  Hence, we obtain     

  

We are really done.   

1 (c). . 

Answer.    valid for .  



Notes 

213 

Solution.  Given , the derivatives are    

,  ,  ,  

,  etc.  In 

general    for  . Evaluate the 

derivative at  and get , and     

 

the coefficients of the Maclaurin series are     

 for  ,  and 

the sequence of coefficients is     

  

Hence, the Maclaurin series is    

       

We are done.   

Exercise 2. Using methods other than computing derivatives, find the 

Maclaurin series for   

2 (a). .  

Hint. Use the trigonometric identity .  

Answer.    valid for all z.   
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Solution.  Use the known series for  which is valid for all z:    

.  Replace  and get the series 

for  :    .  

Using these series we obtain    

  

Therefore,    is valid for all z.   

We are done.   

Exercise 8. Suppose that  is an entire function.  

8 (a). Find a series representation for  ,  using powers of . 

Answer.  .  

Solution.  Start with  and conjugate each term in the 

series     

8 (b). Show that  is an entire function. 

Answer.  .  
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Solution.  Substitute  into the series for   and get 

. Now take the conjugate and 

obtain          Therefore,  is 

valid for all z.  

Now termwise differentiation can be used to obtain the derivative 

of  :       Therefore,   is an 

entire function. 

 Exercise 9. 

Let  ,   

where the coefficients  are the Fibonacci numbers defined by 

    ,  and  , for .  

9 (a). Show that , for all  for some number 

R. 
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Solution.  Observe that     

  Change the index 

of summation in the series and write it as follows     

  

Now use the relation    for  to get    

 Thus we 

have,  .   

Rearrange the terms,  ,  and solve for . 

Therefore,  ,  for all  for some number R. 

We are done.   

7.7 SUMMARY 

We study in this unit about M-test with its examples. We study also 

infinite series and uniqueness of infinite series. We study Taylor series 
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expansion and its general representation with examples. We study 

uniform convergence series. 

7.8 KEYWORD 

Expansion : The political strategy of extending a state's territory by 

encroaching on that of other nations 

Conjugate : Give the different forms of (a verb in an inflected language 

such as Latin) as they vary according to voice, mood, tense, number, and 

person 

Uniform : Remaining the same in all cases and at all times; unchanging 

in form or character 

7.9 QUESTIONS FOR REVIEW 

1. Find a sequence  of real numbers such that  converges 

but  diverges. 

2. Find a sequence  of real numbers such that  diverges 

but  converges (and is greater than zero). 

3. Let  ,   

where the coefficients  are the Fibonacci numbers defined by 

    ,  and  , for .  

4 Suppose that  is an entire function. Find a series 

representation for  ,  using powers of . 

5 For each  r, (where ), the geometric series  converges 

uniformly on the closed disk .  
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7.11 ANSWER TO CHECK YOUR 

PROGRESS 

 Check In Progress-I 

Answer Q. 1 Check in Section 4 

 2 Check in Section 3 

 Check In Progress-II 

Answer Q. 1 Check in section 5 

     2 Check in Section 5 

 

 

 

 

 

 


